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1. Short questions [12 points] For each of the following questions give
a concise answer within a few lines per question.

a) For what population sizes do you expect the Malthus growth model to
be most suitable? Why is the form of the Malthus growth model often
valid for these population sizes, also when additional factors (crowding,
competition for resources, etc) are taken into account?

Solution
The Malthus model is suitable for population sizes much smaller than
all other population scales in the system, but it should not be too
small, such that it matters if one individual is added|removed (then a
stochastic model is needed).

Additional factors such as crowding, competition for resources, etc due
to interaction are non-linear. For population sizes much smaller than
the populations scales associated with the additional factors, the linear
model dominates.

b) Explain how to draw a cobweb plot for a map Nτ+1 = F (Nτ ) and
explain why this is the right procedure to obtain the solution orbit N1,
N2, . . . , starting from N0.

Solution
Lecture notes 2.3
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c) Explain the principle of competitive exclusion and give an example of
a possible application of it.

Solution
If two species are competing for the same resource, the disadvantageous
species must either go extinct or adjust its behavior to a different niche.
Possible applications are pest control or to treat infections by introduc-
ing a competing species to the pest or infectious bacteria.

d) Assume that ammonia (NH3) is spilled on the floor two meters from
where you stand. Estimate the time scale until a significant amount of
NH3 molecules reach your nose, if they are solely transported by three-
dimensional molecular diffusion through air with diffusion coefficient
2 · 10−5m2/s. Comment on the result, is it realistic?

Solution
The displacement due to molecular diffusion is ⟨∆x2⟩ ∼ 6Dt in 3D.
The distance from the source to your head is approximately |∆x| ≈

√
8

m, leading to the time scale t ∼ |∆x|2/(6D) ≈ 2
3
· 105 s ≈ 20 h (any

estimate t ∼ 105 s was accepted).

This time scale is not realistic because the dynamics of the molecules
are dominated by turbulent transport/diffusion. Any small wind puff
will take then to you in order of seconds.

e) Fisher’s equation in one spatial dimension is given by

∂

∂t
n(x, t) = rn(x, t)

(
1− n(x, t)

K

)
+D

∂2

∂x2
n(x, t) .

Explain how a travelling wave solution to Fisher’s equation can travel
much faster into an initially empty region than the solution to the
diffusion equation (obtained by letting r = 0 in Fisher’s equation).

Solution
Diffusion is efficient to smear out sharp gradients, but does not provide
efficient transport into the empty region, the displacement in time scale
t is of the order

√
2Dt due to the law of diffusion. The form of travelling

wave solutions to Fisher;s equation gives a displacement linear in time,
much faster than the diffusive transport. The reason is that at a given
position x, the per capita growth rate due to production, ṅ/n ∼ r(1−
n/K), is largest for small population sizes, creating large gradients to
closeby empty regions. In combination with diffusion which effectively
smear these gradients out, the population moves to initially empty
regions, resulting in a stable wave front, a travelling wave.

f) The Kuramoto model consists of N oscillators with phases θi and nat-
ural angular frequencies ωi

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) .
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Explain how a fraction of these oscillators can be synchronized despite
having different angular frequencies.

Solution
Bernhard’s lecture notes 7.6

g) Consider the stochastic SIS model for disease spreading. Let λn denote
the rate of infection and µn the rate of recovery for n infectives. Write
down a Master equation for the distribution ρn(t) for observing n in-
fectives at time t. Assume that each infection event results in at most
one individual becoming infected.

Solution
The possible transitions to a population of size n are n − 1 → n due
to infection or n + 1 → n due to recovery. The transitions from a
population of size n are n → n+1 due to infection or n → n−1 due to
recovery. The change in probability in a small time step δt is therefore

ρn(t) = ρn(t− δt) + δt[λn−1ρn−1(t− δt) + µn+1ρn+1(t− δt)− (λn + µn)ρn(t− δt)] .

The corresponding Master equation is obtained by rearranging the
terms and taking the limit δt → 0

dρn
dt

= λn−1ρn−1 + µn+1ρn+1 − (λn + µn)ρn .

h) This problem is not part of the course material this year.
Discuss and contrast the effects of measurement noise and dynamical
noise on a time series which is generated by linear (Malthus) decay
(negative growth rate).

Solution
Lecture notes 14.2
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2. Delay model of houseflies [12 points] Consider the following model
for the growth of a population of house flies of size N

Ṅ = −dN(t) + bN(t− T )(k − bsN(t− T )) . (1)

Here d is the per capita death rate and b is the per capita rate of laying eggs.
Furthermore, k, s and T are positive parameters.

a) Give a plausible explanation for the form of the system (1). What is
the significance of the parameters k, s and T?

Solution
The first term is a linear Malthus death term proportional to the pop-
ulation size, with per capita death rate d. The second term is a birth
term that takes into account the time T spent as an egg, i.e. at time
t the bN(t − T ) eggs laid at time t − T hatches to contribute to the
population. k − bsN(t − T ) is egg-to-adult survival ratio: k is maxi-
mal fraction that survives and s is a reduction in survival due to each
additional produced egg.

b) Find all steady states (N(t) = const.) of the Eq. (1). Find a condition
for one positive steady state to exist and use your explanation of the
parameters in subtask a) to argue why the form of the condition is
reasonable.

Solution
There are two steady states whenN∗ = 0 and whenN∗ = (bk−d)/(b2s).
The second steady state is positive if bk > d. This makes sense because
then the egg-laying rate times the fraction of eggs surviving to adult-
hood is larger than the death rate (the second-order term−b2sN(t−T )2

does not matter close to the transition of N from negative to positive).

Let b = 4 and k = d = s = 1 in the subtasks below.

c) Show that close to the positive steady state, the dynamics of a small
perturbation η can be approximated by the form

dη

dt
≈ C1η(t) + C2η(t− T ) . (2)

What are the expressions for the coefficients C1 and C2?

Solution
The positive steady state is N∗ = (bk − d)/(b2s). Write N = (bk −
d)/(b2s) + η and expand the dynamics (1) to first order in η:

dη

dt
= −d

[
bk − d

b2s
+ η(t)

]
+ b

[
bk − d

b2s
+ η(t− T )

](
k − bs

[
bk − d

b2s
+ η(t− T )

])
= −d

[
bk − d

b2s
+ η(t)

]
+

bk − d

bs

(
k − bs

[
bk − d

b2s
+ η(t− T )

])
+ bη(t− T )

(
k − bk − d

b

)
= (bk − d)

1

b2s
[−d− (bk − d) + bk]− dη(t) + [−(bk − d) + bk − (bk − d)]η(t− T )

= −dη(t) + [2d− bk]η(t− T ) ,
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i.e. on the form (2) with C1 = −d and C2 = 2d−bk. Using the specified
parameter values, we have C1 = −1 and C2 = −2.

d) Use the ansatz η(t) = Aeλt in Eq. (2) to derive an equation for λ.

Solution
Inserting the ansatz gives

λAeλt = C1Ae
λt + C2Ae

λ(t−T ) .

⇒ λ = C1 + C2e
−λT = 1− 2e−λT .

e) Find a condition on T for which the steady state population of house-
flies is unstable. What kind of long-term behavior do you expect?

Solution
Write λ = λ′ + iλ′′. The system undergoes a bifurcation to unstable
when λ with maximal real part λ′ passes zero. Expressing the equations
in subtask d) with λ = iλ′′ (so that λ′ = 0) gives

iλ′′ = −1− 2e−iλ′′T = −1− 2[cos(−λ′′T ) + i sin(−λ′′T )]

⇒
{

0 = −1− 2 cos(λ′′T )
λ′′ = 2 sin(λ′′T )

The first equation gives

λ′′T = acos
(
−1

2

)
+ 2πn = π

3
+ 2πn ,

where n is a positive integer. Inserting λ′′T into the second equation
gives

λ′′ =
√
3

Thus, the eigenvalue with maximal real part passes zero when T be-
comes larger than Tc = 1√

3
π
3
(using n = 0 in the condition for λ′′T

above).

Since λ′′ is non-zero, we expect growing oscillations for solutions start-
ing close to the unstable steady state. Since the system does not have
stable attractors we expect the dynamics to approach a limit cycle
(could in principle also be a chaotic dynamics).

3. Effect of spruce budworms on a forest [10 points] In the lectures
the spruce budworm model was introduced for the fast growth of budworms in
a forest under predation. To instead make a model for the effect of budworms
feeding on the foliage (i.e. leaves and branches) of the forest, assume a
constant budworm population of size B at one of its stable steady states:
either outbreak (large B) or refuge (small B). Let S(t) denote the average
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surface area of the branches of a tree and let H(t) denote a general measure
of the forest’s health. A growth model for S and H is

Ṡ = rSS

(
1− S

KS

KH

H

)
Ḣ = rHH

(
1− H

KH

)
− P

B

S

(3)

where rS, rH , KS, KH and P are positive parameters.

a) Interpret the terms in Eq. (3) biologically.

Solution
S is governed by a logistic growth because the maximal surface area
is bounded, with upper limit KS corresponding to the natural size in
absence of budworms. The factor KH/K models decline in growth due
to stress since the surface area may decline through death of branches
or whole trees.

Also H is governed by a logistic growth with a maximal value KH in
absence of budworms. The second term in Ḣ models the stress on
the trees from budworms eating the foliage. It is proportional to B/S
because a large budworm population consumes more, but bigger trees
are less affected.

b) Introduce dimensionless units to write the system (3) in as few dimen-
sionless parameters as possible.

Solution
Let S = s0s, H = h0h and t = t0τ to get

ds

dτ
=

t0
s0
rSs0s

(
1− s0s

KS

KH

h0h

)
dh

dτ
=

t0
h0

[
rHh0h

(
1− h0h

KH

)
− P

B

s0s

]
Choose for example h0 = KH , s0 = KS, t0 = 1/rS to get

ds

dτ
= s

(
1− s

h

)
dh

dτ
= ρh (1− h)− α

1

s

with ρ = rH/rS and α = PB/(rSKSKH).

c) Show, for example geometrically, that the system has two positive fixed
points if B is small and no positive ones if B is large.

Solution
Solving ṡ = 0 gives the positive solution s = h if h > 0, which gives
the following condition in ḣ = 0

0 = ρh (1− h)− α
1

h
⇒ h2 (1− h) =

α

ρ
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Sketching these curves for small α/ρ (small B) and large α/ρ (large B)
show the asked number of positive fixed points:

d) Discuss how the spruce budworm population affects the forest according
to the model. Discuss whether the results are realistic.

Solution
According to the model, for the case of small B, there are two steady
states, out of which one is stable (the one that approaches h = 1 as
ρ → 0). The effect of the budworm is therefore to reduce the surface
area s and health h of the forest. For the case of large B, the forest
does not have any stable fixed points, meaning that it will decrease in
size and eventually pass s = 0 to die out.

However, as the environment changes, the spruce budworm equilibrium
population will slowly change. In particular we expect its carrying
capacity to become smaller as they reduce the health of the forest. This
may cause a jump to a lower population (refuge equilibrium, small B),
where the forest can recover and approach its stable fixed point. The
prediction that the forest dies out therefore seems unrealistic.
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4. Diffusion driven instability [8 points] Consider the following reaction-
diffusion equation system in one spatial dimension for a version of the SI
model of suspeptibles S(x, t) and infectives I(x, t)

∂S

∂t
= b− dSS − βSI +DS

∂2S

∂x2

∂I

∂t
= βSI − dII +DI

∂2I

∂x2

, (4)

where b, dS, dI , β, DS and DI are positive parameters. For simplicity you
can let dS = dI = β = DS = 1 throughout this problem (corresponding to a
suitable dedimensionalisation that you do not need to derive).

a) Show that if b > dIdS/β = 1, the system (4) has a positive homoge-
neous steady state which is stable.

Solution
The positive homogeneous steady state of Eq. (4) is obtained from the
equation system

0 = b− dSS
∗ − βS∗I∗ (5)

0 = βS∗I∗ − dII
∗ (6)

with positive solution

(S∗, I∗) =

(
dI
β
,
b

dI
− dS

β

)
.

Evaluate J at the steady state

J(S∗, I∗) =

(
−dS − βI∗ −βS∗

βI∗ βS∗ − dI

)
=

(
−β b

dI
−dI

β b
dI

− dS 0

)
The fixed point is stable if the trace is negative and the determinant is
positive. For the current system, the trace is always negative and the
determinant becomes

det(J(S∗, I∗)) = −(−dI)(β
b
dI

− dS) = βb− dIdS ,

which is positive when the fixed point is positive, i.e. when b > dIdS/β

In the lectures, we showed that small perturbations δu(x, t) ≡ u(x, t) − u∗

and δv(x, t) ≡ v(x, t) − v∗ from a stable homogeneous steady state (u∗, v∗)
for the concentrations u and v following a generic reaction-diffusion system,
can be decomposed using the ansatz(

δu
δv

)
= eλt+ikx

(
δu0

δv0

)
yielding the following equation:

0 = [λ−K]

(
δu0

δv0

)
, where K = J(u∗, v∗)− k2

(
Du 0
0 Dv

)
.

Here Du and Dv are the diffusion coefficients of u and v respectively.
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b) Does the system (4) have a diffusion-driven instability for any parame-
ter values bc(k) for which space-dependent perturbations with a single
wave number k becomes unstable?

Solution
Calculate detK of the matrix K for the system (4)

K = J(u∗, v∗)− k2

(
DS 0
0 DI

)
=

(
−β b

dI
− k2DS −dI

β b
dI

− dS −k2DI

)
detK = k4DIDS + β

b

dI
k2DI + βb− dSdI

Since trK < 0 (we add something negative to trJ which is negative), the
real part of the maximal eigenvalue λ(k) passes zero when detK goes
from positive to negative. This happens when detK = 0, i.e. when

b = bc(k) =
dSdI − k4DIDS

β[1 + 1
dI
k2DI ]

=
1− k4DI

1 + k2DI

.

But since bc(k) ≤ 1 in this expression, the system is unstable for all
non-zero wave numbers. The system therefore does not have a diffusion
driven instability.

c) Assume a system with a diffusion-driven instability that is unstable to
perturbations with wave numbers in a range k− ≤ k ≤ k+. Initially,
the concentration is obtained by a small random perturbation from the
homogeneous stable steady state. The domain is one-dimensional with
length L and no-flux boundary conditions. What is the minimal length
L required to have a diffusion-driven instability in this system?

Solution
Superposition of the spatial part of the solution eikx gives trigonometric
spatial solutions

Rk(x) = Ak cos(kx) +Bk sin(kx) .

Setting the coordinate system such that the domain is 0 ≤ x ≤ L and
using the no flux boundary conditions ∂

∂x
Rk(0) = ∂

∂x
Rk(L) = 0 gives

the solution Rk(x) = Ak cos(kx) with k = 0, π/L, 2π/L, . . . .

To have a diffusion-driven instability, any of the non-zero modes must
lie in the interval k− ≤ k ≤ k+. The smallest value of L for which this
can happen is π/L = k+, i.e. L = π/k+.
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5. Coalescent process [8 points]

a) The coalescent process is a model for neutral sample genealogies, con-
sistent with the Fisher-Wright model. Describe the coalescent process
in its simplest form, for a sample of size n from a large population,
N ≫ n, and derive the following distribution of the time Tj to the next
coalescent event, given that there are j ancestral lines:

P (Tj) = λj exp(−λjTj) with λj =
1

N

(
j

2

)
. (7)

Solution
See pages 14-16 in Bernhard’s lecture notes.

b) Tajima suggested a test for selection by comparing whether a genetic
mosaic is compatible with a neutral sample genealogy, or not. The
test is based upon two different estimators for the mutation parameter
θ = 2Nµ that are derived from the following equations

⟨Sn⟩ = θ
n−1∑
j=1

1

j
and

〈 1(
n
2

) ∑
i<j

∆ij

〉
= θ . (8)

Here ⟨Sn⟩ is the average number of single-nucleotide polymorphisms
(SNPs) in the sample of size n, and ∆ij is the number of SNPs between
two individuals in the sample, i and j. Derive the two relations in
Eq. (8) using the coalescent process.
Hint: For the first relation, use that the number Sn of SNPs in a given
genealogy for n individuals is Poisson distributed,

P (Sn = j) =
(µT

(n)
tot )

j

j!
exp(−µT

(n)
tot ) ,

where T
(n)
tot is the total branch length of the genealogy. Compute the

expected number of SNPs, and then average over genealogies. For the
second relation, compute ⟨∆ij⟩ by considering n = 2.

Solution
Given in Exam20220317
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