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EXAM for
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Place:
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Johanneberg
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Maximum score on this exam: 50 points (need 20 points to pass).
Maximum score for homework problems: 50 points (need 20 points to pass).
CTH ≥40 grade 3; ≥60 grade 4; ≥80 grade 5,
GU ≥40 grade G; ≥70 grade VG.

1. Short questions [12 points] For each of the following questions give
a concise answer within a few lines per question.

a) Give two examples of biological systems, one where a time delay model
is a suitable model and one where a discrete growth model is suitable.

Solution
Delay example: house flies (delay due to time spent as egg). Discrete
example: Synchronised growth of cells.

b) In the Lotka-Volterra model for prey and predator populationsN and P

Ṅ = N(a− bP )

Ṗ = P (cN − d)

predators have limitless appetite. Explain what this means and how
one can model a limited appetite.

Solution
With limitless appetite interactions (of rate ∝ NP ) have the same
outcome independent of the population sizes and result in terms pro-
portional to NP in the dynamics. Limited appetite can be modelled
by multiplying the encounter rate by a function that decays with N .

c) Write down a growth model for the concentrations in the spontaneous

reaction from substrate S to product P with rate constant k, S
k−−→ P.
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Solution
Let s = [S] and p = [P ]. The growth model becomes

ṡ = −ks

ṗ = ks

d) Give examples of three distinct stochastic mechanisms or effects that
we have described using stochastic models in the course.

Solution
For example: fluctuations of birth rate in growth equations, random
spatial motion, and stochastic gene histories.

e) Consider a striped snake skin pattern created by diffusion driven insta-
bility of morphogen concentrations. Do you expect the stripes to run
from head to tail or like rings around the body? Motivate your answer.

Solution
The stripes should be rings around the body. In a domain with very
small aspect ratio, many wave lengths are allowed along the long axis
but fewer wave lengths along the shorter axis. This is not consistent
with stripes from head to tail, which correspond to a single long wave
length along the long axis (from head to tail) and a much smaller wave
length around the body (separating the different stripes).

f) Explain the mechanism for wave patterns in unstirred concentrations
undergoing the Belousov-Zhabotinsky reaction in a vertical tube.

Solution
See Lecture notes 13.1

g) Explain what is meant by the phase of an oscillator. What does it
mean that several oscillators are phase locked in the Kuramoto model?

Solution
The phase of an oscillator is 2π times the fraction of the period time
of the oscillator. In Kuramoto’s model phase locked oscillators rotate
rigidly with a shared constant frequency (‘phase locked’ means that the
relative phases between oscillators are constant).

h) This problem is not part of the course material this year.
The autocorrelation function of a time series x0, x1 . . . xN−1 is de-

fined by

C(k) =

∑N−k−1
n=0 (xn − ⟨x⟩)(xn+k − ⟨x⟩)∑N−1

n=0 (xn − ⟨x⟩)2
.

Explain how C(k) can be used to detect periodic oscillations in data.
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Solution
If the data has oscillations with period T , then xn and xn+T are corre-
lated and the autocorrelation function has peaks at intervals of approx-
imate length T (approximate because T is not an integer in general).

2. Continuous VS discrete fishery management models [8 points]
Consider the following continuous growth model for how a fish population of
N(t) individuals at time t is affected by fishing

Ṅ = rN

(
1− N

K

)
− EN . (1)

Here E is a fishing rate with 0 ≤ E < r. r and K are positive parameters
denoting the growth rate and carrying capacity in absence of fishing.

a) By rearranging the terms, show that Eq. (1) can be rewritten as a
continuous logistic growth model, Ṅ = rEN(1−N/KE), with effective
growth rate rE and carrying capacity KE. Express rE and KE in terms
of the original parameters r, K and E. Verify that rE > 0.

Solution
Rewrite Eq. (1)

Ṅ = (r − E)N − r
N2

K
= (r − E︸ ︷︷ ︸

rE

)N
(
1− r

(r − E)K︸ ︷︷ ︸
1/KE

N
)

where rE = r−E and KE = K(r−E)/r. Since r > E, we have rE > 0.

b) Using the result in subtask a), write down the stable steady state N∗

of Eq. (1). Define the yield as the removal rate of the population due
to fishing. Which fishing rate E gives the maximal yield in the steady
state of the model (1)? What is the corresponding maximal yield?

Solution
Since rE > 0, the logistic growth model has a stable steady state at
N∗ = KE. The yield at this steady state is Y (E) = EN∗ = EKE =
KE−KE2/r. We obtain the maximal yield when Y ′(E = 0), i.e. when
E = r/2. The corresponding value is Ymax = Y (E = r/2) = Kr/4.

If generations of the fish population do not overlap, it may be better to
consider the following discrete growth model for fishing

Nτ+1 = Nτ + rNτ

(
1− Nτ

K

)
− ENτ . (2)

Assume that the time units are scaled so that r and E takes the same values
in Eqs. (1) and (2).
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c) Verify that the steady state N∗ in subtask b) is a steady state also of
Eq. (2). Contrast the range of stability of N∗ in the two models.
Hint: To simplify the calculation, you can rewrite Eq. (2) in terms of
the parameters rE and KE of subtask a).

Solution
In terms of the parameters in subtask a), we have (by simply adding
Nτ to the rearrangement in subtask a))

Nτ+1 = (1 + rE)Nτ −
rE
KE

N2
τ .

Inserting N∗ = KE gives

LHS: Nτ+1 = KE

RHS: Nτ+1 = (1 + rE)KE − rEKE = KE .

i.e. N∗ is still a steady state. Determine its stability

Λ =
dNτ+1

dNτ

∣∣∣∣
Nτ=KE

= 1 + rE − 2
rE
KE

KE = 1− rE ,

i.e. stable for 0 < rE < 2. In contrast, the steady state of the continu-
ous model is stable for all rE > 0.

d) The plot below shows the bifurcation diagram for the dimensionless
logistic map uτ+1 = ρuτ (1−uτ ) with population size u and parameter ρ.

u
τ

ρ
Verify that the range of stability in subtask c) is consistent with this di-
agram. What happens outside the range of stability of the steady state
N∗? Discuss whether there are situations when fishing can have a ben-
eficial effect on the population dynamics according to the model (2).

Solution
The parameter ρ in the logistic model corresponds to 1 + rE in our
model (the coefficient of the linear term). In the range 1 < ρ < 3
(equivalent to 0 < rE < 2) the bifurcation diagram shows a stable
steady state, consistent with the result in subtask b). For rE < 0 the
diagram shows that there is a transcritical bifurcation to a steady state
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at zero population. For rE > 2 the diagram shows that there is a
period-doubling bifurcation (Λ passes through −1).

According to the model (and observations), due to their large reproduc-
tive rate fish may show large periodic or chaotic fluctuations between
generations. Since fishing is essentially a lowering of the reproductive
rate, fishing may have a stabilising effect, giving periodic solutions or
a stable steady state in a system that would otherwise be chaotic.

3. Travelling waves [10 points] The following is a model for spread of
a population with concentration n(x, t) in a one-dimensional habitat:

∂n

∂t
= rn

(
1− n

K

)(n

A
− 1

)
+D

∂2n

∂x2
. (3)

Here, r, K, A, and D are positive constant parameters. Assume that A < K.

a) Give an explanation of the first term rn
(
1− n

K

) (
n
A
− 1

)
in Eq. (3).

What does K and A signify?

Solution
Carrying capacity K and threshold population A for Allee effect (nega-
tive growth for small population sizes due to difficulty of finding mates,
reduced cooperation, etc).

b) Introduce dimensionless time τ , position ξ and population size u and
rewrite the dynamics (3) in terms of these coordinates and a single
dimensionless parameter of your choice.

Solution
Let n = n0u, t = t0τ and x = x0ξ to get

∂u

∂τ
=

t0
n0

∂n

∂t
= t0ru

(
1− n0

K
u
)(n0u

A
− 1

)
+

t0
x2
0

D
∂2u

∂ξ2

One example is to choose t0 = 1/r, n0 = K and x0 =
√
D/r, and

define α = A/K (0 < α < 1) to obtain

∂u

∂τ
= u (1− u)

(u
α
− 1

)
+

∂2u

∂ξ2
.

c) Assume that u only depends on ξ and τ through the combination z =
ξ − cτ and convert the partial differential equation in subtask b) to a
dynamical system for u and v = du

dz
.

Hint: If you did not solve subtask b), you can instead use Eq. (3) with
r = K = D = 1 and parameter A.

Solution
In terms of the wave variable z, the partial differential equation in
subtask b) becomes (use ∂

∂ξ
= ∂z

∂ξ
d
dz

= d
dz

and ∂
∂τ

= ∂z
∂t

d
dz

= −c d
dz
)

−c
du

dz
= u (1− u)

(u
α
− 1

)
+

d2u

dz2
.
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Let v = du
dz

and rearrange the terms to obtain the dynamical system

du

dz
= v

dv

dz
= −cv − u (1− u)

(u
α
− 1

)
d) Find all fixed points in the system derived in subtask c) and determine

their stability if c < 0 (OBS: Negative sign of c).

Solution
The system has fixed points at (u∗

1, v
∗
1) = (0, 0), (u∗

2, v
∗
2) = (α, 0), and

(u∗
3, v

∗
3) = (1, 0). The stability matrix is

J =

(
0 1

1− 2u+ 1
α
u(3u− 2) −c

)
trJ = −c > 0

det J = 2u− 1 + 1
α
u(2− 3u)

det J(u∗
1, v

∗
1) = −1 < 0

det J(u∗
2, v

∗
2) = 1− α > 0

det J(u∗
3, v

∗
3) = 1− 1

α
< 0

(u∗
1, v

∗
1) is a saddle point

(u∗
2, v

∗
2) is an unstable node/spiral

(u∗
3, v

∗
3) is a saddle point

e) Sketch the shapes of possible travelling wave solutions with c < 0
(OBS: Negative sign of c) in the phase plane for u and v. Sketch
the corresponding wave profiles n(x, t) against t. In which direction
does the wave travel?

Solution
Travelling waves correspond to trajectories connecting fixed points.
The unstable fixed point (u∗

2, v
∗
2) can connect to the stable manifolds

of either of the both saddle points. Since u̇ = v, u increases in the
upper half plane and decreases in the lower half plane, the heteroclinic
trajectories and corresponding travelling wave solutions should look
something as follows:

Both waves move to the left when c < 0 (the wave front at say z =
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ξ − cτ = 0 takes the coordinate ξ = cτ , meaning its location on the ξ
axis moves to smaller ξ when c < 0).

The case where (u∗
2, v

∗
2) is an unstable spiral is similar, but the travelling

waves will oscillate around n = α. There is also the possibility that
the two saddle points are connected, forming a travelling wave between
n = 0 and n = 1, but this is more unlikely since the manifolds of the
saddle points must match exactly.
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4. Disease spreading of two variants of a disease [10 points] The
SIRS model describes the spread of a non-lethal disease where immunity only
lasts for a finite time:

ṡ = −βsi+ γr

i̇ = βsi− αi

ṙ = αi− γr .

(4)

Here s, i and r denote the fractions of the total population that is susceptible
(s), infective (i), or recovered (r). The parameters α, β and γ are positive.

a) Explain the meaning of the time scales associated with the inverse
parameters: 1/α, 1/β and 1/γ.

Solution
1/α is typical time for an infective to become recovered.
1/β is typical time for a susceptible to be infected by a single infective.
1/γ is typical time for a recovered to lose its immunity and become
susceptible.

b) Verify that s+ i+ r is conserved in Eq. (4), and use this fact to remove
r from the equations, leaving two equations for s and i.

Solution
The dynamics of the total population s+ i+ r is

ṡ+ i̇+ ṙ = −βsi+ γr + βsi− αi+ αi− γr = 0 .

Since s + i + r is constant, we can replace r = 1 − s − i in Eq. (4) to
obtain the two equations

ṡ = −βsi+ γ(1− s− i)

i̇ = βsi− αi

c) Show that this model has two steady states, one disease free and one
endemic (you do not need to evaluate their stability). Give a condition
for the endemic steady state to exist.

Solution
The fixed points of the system in subtask b) are (s∗1, i

∗
1) = (1, 0) and

(s∗2, i
∗
2) = (α

β
, γ
α+γ

(1− α
β
)). (s∗1, i

∗
1) is disease free and (s∗2, i

∗
2) is endemic.

The endemic steady state exists if β > α (and if γ > 0).

Assume that the SIRS model (4) successfully describes the spread of a disease,
for example the Delta variant of COVID-19. Now assume a new variant of
the disease forms, for example Omicron. Assume that the new variant gives
similar symptoms (same α and γ), but it is more infectious, and each variant
only gives partial immunity to the other variant.
To simplify, assume further:
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� One individual can at most be infected by one variant at a time

� Individuals do not die, when they recover they become immune to the
variant they were infected by and partially immune to the other variant.

� Both immunity and partial immunity is lost at the same rate.

� If a partially immune individual gets infected, it loses all immunity (i.e.
it behaves as an infected susceptible).

d) Extend and modify the SIRS model (4) to model the spread of two
variants of a disease in a population following the assumptions above.

Solution
One example model is to consider the following compartments:
s susceptible to both variants
i1 infected by variant 1
i2 infected by variant 2
r1 immune to variant 1, susceptible to variant 2
r2 immune to variant 2, susceptible to variant 1

One model for the dynamics satisfying the assumptions is

ṡ = −β1si1 − β2si2 + γ(r1 + r2)

This is the same as the dynamics for s in the SIRS model, but we have
two infection terms with different infection rates, β2 > β1 since the
second variant is more infective.

ṙ1 = −p2β2r1i2 + αi1 − γr1

ṙ2 = −p1β1r2i1 + αi2 − γr2

Same as the dynamics for recovered in the SIRS model, with contribu-
tion from partial immunity by multiplying the infection rate between
recovered and infectious of opposite type by 0 < p1 < 1 and 0 < p2 < 1.
Using continuity, the dynamics for i1 and i2 is obtained (infected minus
recovered)

i̇1 = β1i1s+ p1β1r2i1 − αi1

i̇2 = β2i2s+ p2β2r1i2 − αi2

e) Does your model in subtask d) have a steady state where one of the
variants disappears due to the competition (you do not need to evaluate
the stability of this steady state)? What is the form of the dynamics
for the remaining disease?
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Solution
Assume Omicron makes Delta go extinct, i.e. search for solutions where
i1 = 0 and i̇1 = 0:

ṡ = −β2si2 + γ(r1 + r2)

ṙ1 = −p2β2r1i2 − γr1

ṙ2 = αi2 − γr2

i̇1 = 0

i̇2 = β2i2s+ p2β2r1i2 − αi2

When i1 = 0, then r1 decreases, meaning it will approach zero as
t → ∞, the fixed points of the ṙ1 equation. The remaining dynamics
becomes

ṡ = −β2si2 + γr2

ṙ2 = αi2 − γr2

i̇2 = β2i2s− αi2

i.e. an SIRS model for the remaining variant (the steady state values
s∗ and i∗2 are given in subtask b) and r∗2 = 1− s∗ − i∗2).

5. Coalescent process [10 points]

a) [5 points] The coalescent process is a model for neutral sample ge-
nealogies, consistent with the Fisher-Wright model. Describe the coa-
lescent process in its simplest form, for a sample of size n from a large
population, N ≫ n, and derive the following distribution of the time
Tj to the next coalescent event, given that there are j ancestral lines:

P (Tj) = λj exp(−λjTj) with λj =
1

N

(
j

2

)
. (5)

Solution
See pages 14-16 in Bernhard’s lecture notes.

b) [3 points] Tajima suggested a test for selection by comparing whether
a genetic mosaic is compatible with a neutral sample genealogy, or
not. The test is based upon two different estimators for the mutation
parameter θ = 2Nµ that are derived from the following equations

⟨Sn⟩ = θ
n−1∑
j=1

1

j
and

〈 1(
n
2

) ∑
i<j

∆ij

〉
= θ . (6)

Here ⟨Sn⟩ is the average number of single-nucleotide polymorphisms
(SNPs) in the sample of size n, and ∆ij is the number of SNPs between
two individuals in the sample, i and j. Derive the two relations in
Eq. (6) using the coalescent process.
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Hint: For the first relation, use that the number Sn of SNPs in a given
genealogy for n individuals is Poisson distributed,

P (Sn = j) =
(µT

(n)
tot )

j

j!
exp(−µT

(n)
tot ) ,

where T
(n)
tot is the total branch length of the genealogy. Compute the

expected number of SNPs, and then average over genealogies. For the
second relation, compute ⟨∆ij⟩ by considering n = 2.

Solution
Averaging over Poisson process gives ⟨Sn⟩ = µT

(n)
tot . Now average over

genealogies using ⟨T (n)
tot ⟩ =

∑n
j=2 j⟨Tj⟩ (need to draw a genealogy to

check that this is correct). Averaging using Eq. (5) gives 2N
∑n−1

j=1
1
j
.

Need to remember that
(
j
2

)
= j(j − 1)/2. The j cancels, redefine the

summation variable to get the result.

For the second relation, use that ⟨∆ij⟩ = ⟨S2⟩. Averaging over the
Poisson process and genealogies gives ⟨∆ij⟩ = 2µ⟨T2⟩ = θ.

c) [2 points] The two estimators

θ̂1 =
( n−1∑

j=1

1

j

)−1

Sn and θ̂2 =
1(
n
2

) ∑
i<j

∆ij

have the same average for neutral genealogies. Explain qualitatively in
a couple of sentences why the estimators tend to have different averages
when selection is important.
Hint: Remember how selection tends to change genealogies.

Solution
Selection makes the genealogies more tree-like. This makes it more likely to
observe singletons in the sample, where an SNP occurs only in one individual,
but not in the others. In this case one expects ⟨θ̂2⟩ < ⟨θ̂1⟩. For a neutral
genealogy, the relations (6) show that ⟨θ̂2⟩ = ⟨θ̂1⟩.
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