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1. Short questions [3 points] For each of the following questions give a
concise answer within a few lines per question.

a) Discuss why we study mathematical models of biological systems. What
are the advantages and disadvantages compared to other approaches
such as computer models or experimental models?

Solution
Lecture notes 1.1

b) Explain what a cobweb plot is and how it is generated. Illustrate using
an explicit example.

Solution
Lecture Notes 2.1

c) Show that the Ricker map

Nτ+1 = ρNτe
−Nτ

with ρ > 0 has a period-doubling bifurcation at a critical value ρc.

Solution
The map has fixed points at N∗1 = 0 and N∗2 = ln ρ. Evaluate

∂Nτ+1

∂Nτ

= ρe−Nτ (1−Nτ )

Λ1 =
∂Nτ+1

∂Nτ

∣∣∣∣
Nτ=N∗

1

= ρ

Λ2 =
∂Nτ+1

∂Nτ

∣∣∣∣
Nτ=N∗

1

= 1− ln ρ
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We have a period-doubling bifurcation when Λ2 passes −1, i.e. when
ρ = ρc = e2.

d) What does the law of mass action state? Explain the form of the law
of mass action.

Solution
The law of mass action states that reaction rates of chemical reactions
are proportional to the product of the concentrations of the reactants.
The reason for this is that the rate at which the reactants encounter
each other in a well mixed environment is proportional to the number
of pairs of the reacting entities, which in turn is proportional to the
product of concentration of reactants.

e) The following is a stochastic model for Malthus growth:

QN(t) = QN(t− δt) + rδt(N − 1)QN−1(t− δt)− rδtNQN(t− δt) .

Here QN(t) is the probability to have a population of size N at discrete
time steps separated by δt. Explain the meaning of r and the form of
the different terms in this equation.

Solution
Lecture Notes 5.1

f) Discuss similarities and differences between molecular diffusion and
population diffusion.

Solution
Lecture Notes 6.1

g) Consider a generic reaction diffusion equation in one spatial dimension

∂

∂t
n(x, t) = f(n(x, t)) +D

∂2

∂x2
n(x, t) ,

where f only implicitly depends on t and x through n(x, t). Explain
why the solutions to f(n) = 0 are important for travelling wave solu-
tions of the reaction diffusion equation.

Solution
Lecture notes 6.3

h) Write down the SIR model for spreading of diseases and explain all
involved variables and parameters.

Solution
Bernhard’s lecture notes

2. Delay model for white blood cells [2.5 points] White blood cells
are produced in the bone marrow to be released in the body. Since it takes

2 (8)



several days to produce white blood cells in response to a deficit, the number
of white blood cells N in the blood stream at time t can be modeled using

dN

dt
= −γN(t) +

βN(t− T )θm

θm +N(t− T )m
. (1)

Here 0 < γ < β, θ > 0 and T > 0. m is a positive integer.

a) Assuming N has dimension ’size’ and t has dimension ’time’, what are
the dimensions of the parameters γ, β, θ and T? Explain the roles of
T , γ, β and θ in the model.

Solution
The dimensions are [γ] = [β] = time−1, [θ] = size and [T ] = time. T is
a time delay modeling the time delay of producing the blood cells. γ
is the decay rate of blood cells in the blood stream. The second term
models (delayed) production of blood cells. For population sizes that
have been small (compared to θ) on the times scale T , we have linear
production with growth rate β, for population sizes that have been
larger that θ on the times scale T , the production is small (or constant
if m = 1) and the population decays due to −γN . We can therefore
think of θ as proportional to a target cell population size (similar to a
carrying capacity).

b) Introduce dimensionless units and write Eq. (1) in terms of m, a di-
mensionless delay time, and one additional dimensionless parameter.

Solution
Let t = t0τ and N(t) = N0u(τ)

du

dτ
=

1

N0

dN

dτ
=

1

N0

dN

dt

dt

dτ
=

t0
N0

[
−γN0u(τ) +

βN0u(τ − T/t0)θm

θm +Nm
0 u(τ − T/t0)m

]
= −t0γu(τ) +

βt0u(τ − T/t0)θm

θm +Nm
0 u(τ − T/t0)m

= −u(τ) + α
u(τ −D)

1 + u(τ −D)m

where we chose t0 = 1/γ, N0 = θ and defined the dimensionless pa-
rameter α = β/γ > 1 and dimensionless delay time D = γT in the last
step.

c) Find all steady states (N(t) = const.) of the dimensionless system in
subtask b) [if you failed subtask b) you can use Eq. (1) in what follows].
Verify that the steady states are biologically relevant for the parameter
constraints given below Eq. (1).

Solution
There are two steady states solutions to 0 = −u+α u

1+um
, when u∗ = 0

and u∗ = (α− 1)1/m. Since α > 1 by the constraints, both fixed points
are non-negative and thus biologically relevant.

d) To simplify, consider the case m = 1 in this subtask. Derive the dy-
namics of a small time-dependent perturbation η(t) close to the most
positive steady state.
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Solution
The most positive steady state is u∗ = (α − 1)1/m. Write u(t) =
(α− 1)1/m + η(t) and expand the dimensionless dynamics to first order
in η

dη

dτ
= −[(α− 1)1/m + η(t)] + α

(α− 1)1/m + η(τ −D)

1 + [(α− 1)1/m + η(τ −D)]m

= −(α− 1)1/m − η(t) + α
(α− 1)1/m + η(τ −D)

1 + (α− 1)[1 + (α− 1)−1/mη(τ −D)]m
= [Beta]

≈ −(α− 1)1/m − η(t) + α
(α− 1)1/m + η(τ −D)

1 + (α− 1)[1 +m(α− 1)−1/mη(τ −D)]

= −(α− 1)1/m − η(t) +
(α− 1)1/m + η(τ −D)

1 +m(α− 1)1−1/mη(τ −D)/α
= [Beta]

≈ −(α− 1)1/m − η(t) + [(α− 1)1/m + η(τ −D)][1−m(α− 1)1−1/mη(τ −D)/α]

≈ −η(t) +
α(1−m) +m)

α
η(τ −D)

Using m = 1 as suggested would simplify the calculation and give
dη
dτ
≈ −η(t) + η(τ −D)/α.

e) It can be shown (you do not need to show this) that the ansatz η(t) =
eλt has solutions with positive real part of λ for certain parameter
values, while for other parameters all solutions have negative real part
of λ. Discuss possible long-term behaviours of the system (1).

Solution
If all λ are negative, the system approaches the fixed point η(t), possible
oscillating if the imaginary part of λ is non-zero. When any λ has
positive roots, the small perturbations will grow and one will obtain
periodic or chaotic motion depending on the nature of the non-linear
terms.

3. Plants in dry environments [2.5 points] In dry environments plant
growth is mainly limited by the access to water. Assuming a small constant
supply of water, the population size N of plants and amount W of accessible
water can be modeled by the following system

Ṅ = aNW − bN
Ẇ = S − cW − dNW

(2)

where a, b, c, d and S are positive parameters.

a) Give plausible interpretations of the different terms in Eq. (2).

Solution
The number of plants grow with a rate aW , i.e. proportional to the
amount of available water. −bN is a linear death rate of plants. S is
the constant supply of water, cW is linear decrease (for example due
to evaporation or runoff) of water and −dNW is decrease of water due
to plant uptake.
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b) Introduce dimensionless units in Eq. (2). Choose units such that the
dimensionless growth rate of W does not depend on any parameter.
Which parameter combinations govern the dimensionless growth of N?

Solution
Let N = uN0, W = vW0 and t = τt0 to obtain

du

dτ
=

t0
N0

[aN0W0uv − bN0u]

dv

dτ
=

t0
W0

[S − cW0v − dN0W0uv]

Choose t0 = 1/c, W0 = S/c and N0 = c/d to get

du

dτ
= αu[βv − 1]

dv

dτ
= 1− v − uv

with α = b/c and β = aS/(bc) the governing parameter combinations.

c) Find all steady states of the dimensionless system [or (2) if you failed
subtask b)] and determine conditions for which they are biologically
relevant. Discuss the biological meaning of the different steady states.

Solution
The fixed points are (u∗1, v

∗
1) = (0, 1) and (u∗2, v

∗
2) = (β − 1, β−1). The

first steady state is a desert state without plants (v = 1 corresponds to
W = W0 = S/c, i.e. the balance state between water supply and loss).
The second steady state is positive (biologically relevant) if β > 1.

d) Determine the stability of the fixed points as a function of the system
parameters. Discuss the possible long-term states of the system for
different parameters.

Solution
Stability

J =

(
α[βv − 1] αβu
−v −1− u

)
trJ(u∗1, v

∗
1) = α[β − 1]− 1

trJ(u∗2, v
∗
2) = −β

det J(u∗1, v
∗
1) = α[1− β]

det J(u∗2, v
∗
2) = α[β − 1]

If 0 < β ≤ 1 the system has a single stable fixed point (u∗1, v
∗
1) and the

system becomes desertified. If β > 1 the system has two fixed points,
where (u∗1, v

∗
1) is unstable and (u∗2, v

∗
2) is stable, the long term behavior

is a system with plants.
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4. A linear reaction-diffusion equation [2 points] Consider the reaction-
diffusion equation in two spatial dimensions

∂u

∂t
= 2− u+

∂2u

∂x2
+
∂2u

∂y2

∂v

∂t
= u− 2v + 4 + 3

(
∂2v

∂x2
+
∂2v

∂y2

) (3)

a) Find the homogeneous steady state (u∗, v∗) of the system (3) and de-
termine its stability.

Solution
The steady state is given by

0 = 2− u
0 = u− 2v + 4

i.e. it is located at (u∗, v∗) = (2, 3).

The stability matrix becomes

J =

(
−1 0
1 −2

)
trJ = −3

det J = 2

i.e. the fixed point is stable.

b) By making an ansatz (u, v) = (u∗, v∗) + eλt+i(kxx+kyy)(δu0, δv0) where
(δu0, δv0) are (possibly complex) constants, find all solutions λ as func-
tions of k =

√
k2x + k2y.

Solution
Inserting the ansatz into Eq. (3) gives

λeλt+i(kxx+kyy)δu0 = −eλt+i(kxx+kyy)δu0 − k2eλt+i(kxx+kyy)δu0

λeλt+i(kxx+kyy)δv0 = eλt+i(kxx+kyy)δu0 − 2eλt+i(kxx+kyy)δv0 − 3k2eλt+i(kxx+kyy)δv0

⇒ 0 = −[λ+ 1 + k2]δu0

0 = δu0 − [λ+ 2 + 3k2]δv0

The first equation gives λ1 = −1 − k2 or δu0 = 0]. For the first case
the second equation simply gives a relation between δv and δu. For the
second case, the second equation becomes 0 = −[λ + 2 + 3k2]δv0 with
solution λ2 = −2− 3k2

c) An observation in nature is that there is (almost) no animal with
striped body and spotted tail, but there is animal with spotted body
and striped tail. Give one possible explanation (without calculations)
for this observation.

Solution
Lecture notes 8
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5. The Kuramoto model [2 points] Consider a number N of coupled
oscillators with phases θ1, θ2, . . . θN with the following time evolution

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (4)

a) Introduce the order parameters r(t) and ψ(t)

reiψ =
1

N

N∑
j=1

eiθj (5)

and show that Eq. (4) can be written on the following form

θ̇i = ωi +Kr sin(ψ − θi) . (6)

Solution
Multiplication of Eq. (5) with e−iθi and evaluation of the imaginary
part gives

Im[rei(ψ−θi)] = Im

[
1

N

N∑
j=1

ei(θj−θi)

]

⇒r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) .

Inserting this relation into Eq. (4) gives the sought form:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

= ωi +Kr sin(ψ − θi) .

b) What is the significance of r and ψ? Explain the significance of Eq. (6),
what is gained compared to Eq. (4)?

Solution
r quantifies the phase coherence (unity if all phases are equal and zero
if phases are uniformly distributed)

ψ is the arithmetic mean, eiθ, over all oscillators, i.e. a measure of the
average phase of the oscillators.

In Eq. (4) all oscillators are coupled to each other, while in Eq. (6)
each oscillator is instead only implicitly coupled to the other oscillators
through the average phase.
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c) In the limit of N → ∞ we may, for each ω, interpret the oscillators
as a continuum on the interval −π < θ < π. Denote by n(θ, t) the
concentration of oscillators with angle θ at time t. Use the dynamics
of individual oscillators (6) to derive a continuity equation for n(θ, t).

Solution
The change of total concentration in a small interval δθ is given by the
net flux j(θ, t)− j(θ + δθ, t) of concentration through the interval.

∂

∂t

∫ θ+δθ

θ

dθ′n(θ′, t) = j(θ, t)− j(θ + δθ, t) .

⇒ ∂

∂t
n(θ, t) = − ∂

∂θ
j(θ, t)

Here j(θ, t) is given by advection using the flow (6), j = [ω+Kr sin(ψ−
θ)]n(θ, ω, t). Using this expression for j gives

∂

∂t
n(θ, t) = − ∂

∂θ
[ω +Kr sin(ψ − θ)]n(θ, ω, t)

d) Find a steady state solution (by setting ∂n
∂t

= 0) to the continuity
equation you derived in subtask c) for the case of r = 0. Does your
result correspond to your expectations?

Solution
When r = 0 and ∂n

∂t
= 0 we have

0 = −ω ∂

∂θ
n(θ, ω, t) ,

i.e. n(θ) = const. = Nω/(2π) where Nω is the total number of os-
cillators with natural frequencey ω. A uniform distribution of angles
is indeed what we expect for the incoherent state of oscillators when
r = 0.
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