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Maximum score on this exam: 12 points (need 5 points to pass).
Maximum score for homework problems: 18 points (need 7 points to pass).
CTH ≥15 grade 3; ≥20 grade 4; ≥25 grade 5,
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1. Short questions [3 points] For each of the following questions give a
concise answer within a few lines per question.

a) Give an example of a biological system which is suitable to model using
a time delay model.

Solution

b) What do we typically mean when we say a population size is ‘small’ or
‘large’?

Solution
It does not make sense to relate the population size to unity because the
number of individuals are usually much larger, and cannot be smaller
unless the population has gone extinct. Small and large instead refer
to reference scales in the system, for example the carrying capacity or a
threshold for the Allee effect. The population size is small if it is much
smaller than the reference scales, and large if it is much larger than the
reference scales.

c) Assume a one-dimensional map xn+1 = F (xn) with a single stable
fixed point x∗ for r < rc, where r is a system parameter. At r = rc,
the system undergoes a period-doubling bifurcation. Show that the
eigenvalue of the second iterate of the map evaluated at the fixed point,
F (F (x∗)), is equal to +1 at r = rc.
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Solution
Since x∗ is a fixed point, we have F (x∗) = x∗. At the period-doubling
bifurcation Λ = F ′(x∗) = −1. Evaluating the eigenvalue Λ2 of the
second iterate at the fixed point we have

Λ2 =
d

dx
F (F (x))|x=x∗ = F ′(F (x∗))F ′(x∗) = F ′(x∗)2 = (−1)2 = +1

d) In the first problem set you analyzed a time-delayed model with an
Allee effect. Explain what the Allee effect is and give an example of a
biological system where it may be important.

Solution
In systems where the population has a reduced reproduction or survival
capacity for small population sizes, the population may go extinct if the
population density becomes too small. This is the Allee effect. It may
for example be important in systems where anti-predator strategies
becomes inefficient in small groups.

e) Consider the following chemical reaction

S + E
k1−−⇀↽−−
k−1

SE
k2−−→ P + E ,

where k−1, k1, and k2 are rate constants. Using the law of mass action,
write down a dynamical system model for the change in concentrations
of the chemicals.

Solution
Introducing concentrations s = [S], e = [E], c = [SE], p = [P ] the
law of mass action states that the reaction rate is proportional to the
product of concentrations of the reactants. We get:

ṡ = −k1es+ k−1c

ė = −k1es+ (k−1 + k2)c

ċ = k1es− (k−1 + k2)c

ṗ = k2c .

f) Describe a possible mechanism that may explain morphogenesis such
as patterns in animal coating.

Solution

g) Explain the difference between a quasi-steady state and a regular steady
state. Give an example of a system with a quasi-steady state.

Solution
A quasi-steady state is a state for which the dynamics approximately
does not change for a long time, but where, in the long run, the dy-
namics will move to a different state. For example in a stochastic
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model, the distribution of individuals is approximately constant for a
long time, but since there is a finite probability that the population
goes extinct, the distribution must drift towards a Dirac delta function
at zero population as time goes to infinity.

h) The Kuramoto model for N coupled oscillators with phases θ1, θ2, . . . θN
has the following time evolution

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) .

Here ωi are random angular frequencies with a symmetric and unimodal
(single peak) distribution g(ω). Discuss what is meant by drifting and
phase-locked modes in a mean-field analysis of this model.

Solution
Bernhard’s lecture notes 2.6

2. Interaction model with mutualism [2 points] A simple model for
mutualistic interactions (symbiosis) between two species of sizes N1 and N2

is given by

dN1

dt
= r1N1

(
1− N1

K
+ α

N2

K

)
dN2

dt
= r2N2

(
1− N2

K
+ α

N1

K

)
where r1, r2, K, and α are positive constants.

a) For the upper equation governing N1, explain the role and meaning of
the parameters r1, K and α

Solution
r1 is the growth rate of N1 for small population sizes. K is the carrying
capacity of N1 in absence of N2. α models the mutualistic benefit
from the second species on the first one by assuming that interactions
between the species reduce competition within species 1, allowing for
a larger population.

b) Introduce dimensionless variables to reduce the number of parameters
to a minimum. Write out your resulting dimensionless parameters in
terms of the original parameters.

Solution
Change to dimensionless variables t = Aτ , N1 = Bu, N2 = Cv

B

A

d

dτ
u = Br1u

(
1− Bu

K
+ α

Cv

K

)
C

A

d

dτ
v = Cr2v

(
1− Cv

K
+ α

Bu

K

)
,
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Choose A = 1/r1, B = K, C = K/α to get the dimensionless equations

d

dτ
u = u (1− u+ v)

d

dτ
v = ρv

(
1− v

α
+ αu

)
,

,

where we defined ρ = r2/r1.

The dimensionless parameters are ρ = r2/r1 and α

c) Consider the special case α = 1/2 in this subtask. Locate the fixed
point for which both population sizes are positive and investigate its
stability. Discuss how the dimensional population sizes N∗

1 and N∗
2 at

this fixed point compares to the positive steady state without interac-
tions (α = 0).

Solution
The dimensionless dynamics has one non-zero fixed point at (u∗, v∗) =
(1, α)/(1− α) = (2, 1). The stability matrix evaluated becomes

J =

(
1− u+ v − u u

ρv
2

ρ
(
1− 2v + u

2

)
− 2ρv

)∣∣∣∣
(u,v)=(u∗,v∗)

=

(
−2 2
ρ
2

−2ρ

)
trJ = −2(1 + ρ) < 0

det J = 3ρ > 0

The fixed point is stable (node).

In the steady state the fixed point (u∗, v∗) = (2, 1) is reached. In the
original units, we have N∗

1 = u∗K = 2K, N∗
2 = K/αv∗ = 2K. Both

population sizes are doubled in the steady state compared to the case
without interactions (where N∗

1 = K and N∗
2 = K).

d) Investigate the long-term dynamics for the case α = 1 and r1 = r2.
Discuss what consequences your result has for the model.
Hint: It may be simpler to analyze the model by considering the coor-
dinates w± = u1±u2, where u1 and u2 are the dimensionless population
sizes.

Solution
Let ρ = α = 1 and evaluate

d

dτ
w+ = u (1− u+ v) + v (1− v + u) = w+ − w2

−

d

dτ
w− = u (1− u+ v)− v (1− v + u) = w−(1− w+) ,

,

If the initial w− is chosen small enough, then the sum of populations
w+ will grow without bounds while w− will remain small (in fact any
initial condition with u > 0 and v > 0 will grow without bound).

Since the population grows to infinity the model is not realistic for the
case ρ = α = 1 (in fact it is unrealistic for all α ≥ 1).

4 (10)



3. Stochastic population model [2 points]

a) Write down an equation for how the probability QN(t) to have a pop-
ulation of size N at time t changes in small time steps δt. Assume
stochastic dynamics. At each time step δt any individual has the prob-
ability b1δt to give birth to one offspring and the probability b2δt to
give birth to two offsprings.

Solution
The change in probability QN(t) during one time step is given by one-
step transitions due to births or deaths from or to N individuals. These
are

� N − 1 → N due to birth with one offspring

� N → N + 1 due to birth with one offspring

� N − 2 → N due to birth with two offsprings

� N → N + 2 due to birth with two offsprings

The change in probability taking all of these transitions into account is

QN(t+ δt)−QN(t) = b1δt(N − 1)QN−1(t)− b1δtNQN(t)

+ b2δt(N − 2)QN−2(t)− b2δtNQN(t)

b) By taking the limit δt → 0, derive a differential equation in time (Mas-
ter equation) for the probability in subtask a).

Solution
Dividing the equation in subtask a) by δt and taking the limit δt → 0
we obtain the following differential equation

d

dt
QN(t) = b1(N − 1)QN−1(t) + b2(N − 2)QN−2(t)− (b1 + b2)NQN(t) .

c) Show that in the limit of largeN the average population size approaches
a deterministic dynamics. What is the growth rate of the deterministic
dynamics?

Solution
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Multiply the Master equation by N and sum over N

d

dt

∞∑
N=0

NQN = b1

∞∑
N=0

N(N − 1)QN−1 + b2

∞∑
N=0

N(N − 2)QN−2 − (b1 + b2)
∞∑

N=0

N2QN

[Change of variables N = N ′ + 1 in the first sum, N = N ′ + 2 in the second sum]

= b1

∞∑
N ′=−1

(N ′ + 1)N ′QN ′ + b2

∞∑
N ′=−2

(N ′ + 2)N ′QN ′ − (b1 + b2)
∞∑

N=0

N2QN

[The probability to have a negative population must be zero. ]

= b1

∞∑
N ′=0

(N ′ + 1)N ′QN ′ + b2

∞∑
N ′=0

(N ′ + 2)N ′QN ′ − (b1 + b2)
∞∑

N=0

N2QN

=
∞∑

N=0

[b1NQN + 2b2NQN ]

=
∞∑

N=0

[b1 + 2b2]NQN .

The average population size N at time t is

⟨N(t)⟩ =
∞∑

N=0

NQN(t)

which gives the deterministic dynamics

d

dt
⟨N(t)⟩ = (b1 + 2b2)⟨N(t)⟩ .

This is a Malthus growth with birth rate b1 + 2b2.

d) Explain the form of the growth rate you obtained in subtask c) in
relation to the assumptions in subtask a).

Solution
It seems reasonable that the total growth rate is the sum of the two
birth rates. The second birth rate is weighted by a factor 2 because
each birth event give rise to two offsprings.

e) Without doing any calculations, write down the growth rate in a model
where, in addition to the conditions in subtask a), there are birth events
with probability b3δt that result in three offsprings.

Solution
The growth rate if births with three offsprings are taken into account
becomes r = b1 + 2b2 + 3b3.

4. Reaction diffusion with density-dependent diffusion [2.5 points]
In spatial diffusion of insects, the diffusion sometimes depends on the density
of the population. One example of a model taking this into account is

∂n

∂t
(x, t) = rn(x, t)

(
1− n(x, t)

K

)
+

∂

∂x

[
D(n(x, t))

∂

∂x
n(x, t)

]
. (1)
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Here n(x, t) is the population density at position x and time t, r is a positive
growth rate, K is the carrying capacity and D(n(x, t)) is a density-dependent
diffusion coefficient. In what follows, assume D(n(x, t)) = D0n(x, t), where
D0 is a positive constant.

a) What is the dimensionality of D0?

Solution
In terms of a time scale T , length scale L and population density scale
N , the equation has dimensionality N/T , the term involving D0 has
dimensionality [D0]N

2/L2, meaning that [D0] = L2/(NT ).

b) Introduce dimensionless units such that Eq. (1) can be written without
any parameters.

Solution
Let t = At′, n = Bn′ and x = Cx′ to get (drop primes to simplify
notation)

∂n

∂t
(x, t) =

A

B
rBn(x, t)

(
1− B

K
n(x, t)

)
+

A

B

B2

C2
D0

∂

∂x

[
n(x, t)

∂

∂x
n(x, t)

]
(2)

= n(x, t) (1− n(x, t)) +
∂

∂x

[
n(x, t)

∂

∂x
n(x, t)

]
. (3)

where we used A = 1/r, B = K and C =
√

KD0/r to remove all
dimensional parameters.

c) Assume that n, x, t are the new dimensionless coordinates and that
n(x, t) = u(z) only depends on the combination z = x − ct. Starting
from your dimensionless version of Eq. (1) derive an ordinary differen-
tial equation for u(z).

Solution
For this coordinate change partial derivatives transform as

∂n

∂t
= −c

du

dz
∂n

∂x
=

du

dz

and Eq. (1) gives the ordinary differential equation

−c
d

dz
u(z) = u(z)(1− u(z)) +

d

dz

[
u(z)

d

dz
u(z)

]
,

d) Rewrite the ordinary differential equation for u(z) obtained in subtask
c) in terms of a first order system for u(z) and v(z) = u′(z).
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Solution

du

dz
= v(z)

dv

dz
= u(z)− 1− v(z)

u(z)
(c+ v(z))

e) The equations you derived in subtask d) should have a singularity at
u = 0. This singularity can be regularized (you do not need to show
nor consider this). The regularized dynamics has three fixed points
at (u∗, v∗) = (0, 0) (saddle point), (u∗, v∗) = (1, 0) (saddle point) and
(u∗, v∗) = (0,−c) (stable non-linear node). Note that due to the sin-
gularity, trajectories reach the node (u∗, v∗) = (0,−c) for finite values
of z. The dynamics is plotted for three values of c below:
v v v

u u
u

(i) (ii) (iii)

Discuss in which of the three cases travelling wave solutions are possible
and sketch the wave profiles (as functions of z) for these cases.

Solution
Travelling waves are solutions connecting steady states (heteroclinic
orbits) of the phase-plane dynamics. The cases (ii) and (iii) have such
solutions and may therefore have travelling wave solutions.

For the case (iii) the heteroclinic trajectory connects the steady states
(u∗, v∗) = (1, 0) and (u∗, v∗) = (0, 0). The wave profile is similar to
that of Fisher’s equation with constant diffusion. The curve decreases
monotonically from u = 1 at z → −∞ to u = 0 at z → ∞.

For the case (ii) the heteroclinic trajectory connects the steady states
(u∗, v∗) = (1, 0) and (u∗, v∗) = (0,−c). Also in this case the trajectory
decreases monotonically, but it will have an ever-increasing slope, in-
tersecting the line u = 0 with non-zero slope at some value zc (as stated
in the problem formulation, the node is reached at a finite z) and the
profile is zero for z > zc.

5. Disease spreading with vaccination [2.5 points] A simple model
for disease spreading is the following modified SIR model with the dynamics

Ṡ = (1− p)b(S + I +R)− βSI − dS

İ = βSI − αI − dI

Ṙ = pb(S + I +R) + αI − dR .

(4)

Here S is the number of susceptibles, I is the number of infectives, and R
is the number of immune individuals (recovered or vaccinated individuals).

8 (10)



The parameters b, d, β, α are positive, and p is the ratio of individuals that
are vaccinated at birth, 0 ≤ p ≤ 1.

a) Give brief explanations of the different terms in Eq. (4). Does the model
apply to a disease that is likely to be transmitted from the mother to
the baby upon birth? Does the model apply to a deadly disease?

Solution
The model has two birth terms: a contribution (1− p)b(S + I +R) to
S and a contribution pb(S + I + R). Since the latter is proportional
to the vaccination rate, all newborns that are vaccinated contribute to
growth of R, while newborns not vaccinated contribute to growth of S.
The proportionality to the total population size S+R+I indicates that
all individuals can give birth at equal rate. Since no births contribute
to I it is assumed that the disease is unlikely to be transmitted upon
birth, and the model would not apply to that case.

The model has three death terms, all proportional to the number of
individuals in respective category. Thus, the model does not assume
increased death rate for infectives and the model does therefore not
apply to a deadly disease.

The terms βSI is the infection term, proportional to the interaction
rate between susceptibles and infectives. The terms αI is the removal
rate of infectives due to recovery.

b) Find a condition on the model parameters such that the total popula-
tion size N = S + I +R is constant.

Solution
The total population size evolves as

Ṅ = Ṡ + İ + Ṙ = (b− d)(S + I +R)

Thus, the total population size does not change if d = b.

c) In what follows, consider the special case b = d = 1 and α = 99,
leaving two model parameters β and p. Consider first the case of full
vaccination, p = 1, and investigate the long-term behaviour of the
system (4). Give an explanation of the result.

Solution
Since d = b the total population size is constant and it is enough to
consider the equations for S and I since the equation for R decouples.
We have

Ṡ = (1− p)N − βSI − S

İ = βSI − 100I
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When p = 1, this system has a single biologically relevant steady state
(S∗

1 , I
∗
1 ) = (0, 0). The Jacobian at this steady state becomes

J =

(
−βI − 1 −βS

βI βS − 100

)∣∣∣∣
(S,I)=(S∗

1 ,I
∗
1 )

=

(
−1 0
0 −100

)
This matrix has trJ = −101 < 0 and det J = 100 > 0, i.e. the steady
state is stable.

In conclusion, since all newborns are vaccinated, all initial susceptibles
will either become infected or die in the long run. As a consequence also
all infectives will die out and in the steady state the entire population
will belong to the recovered+vaccinated group with size R = N .

d) Use the parameters of subtask c) (with general p) to find a condition on
the vaccination ratio p below which the disease may become endemic
(non-zero number of infectives in the long run).

Solution
For the disease to be endemic, the system must sustain a finite number
of infectives, i.e. the system must have a stable steady state (S∗, I∗)
with I∗ > 0. The system

Ṡ = (1− p)N − βSI − S

İ = βSI − 100I

has a steady state with I∗ > 0, (S∗
2 , I

∗
2 ) = (100

β
, (1 − p) N

100
− 1

β
), if

0 ≤ p < 1− 100
Nβ

≡ pc and β > 100/N .

Examining the stability of this steady state, we have

J =

(
−βI − 1 −βS

βI βS − 100

)∣∣∣∣
(S,I)=(S∗

2 ,I
∗
2 )

=

(
−(1− p)β N

100
−100

(1− p)β N
100

− 1 0

)

=

(
− 1−p

1−pc
−100

1−p
1−pc

− 1 0

)

Since p < pc, we have 1−p
1−pc

> 1, i.e. trJ = − 1−p
1−pc

< 0 and det J =

100( 1−p
1−pc

− 1) > 0, i.e. the fixed point is stable.

In conclusion, the condition is 0 ≤ p < 1− 100
Nβ

≡ pc and β > 100/N .

Alternative solution: Since N = S + I +R ≥ R we have

Ṙ = N −R + αI ≥ 0

i.e. R stops increasing only when S = I = 0, i.e. the steady state of
the system.
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