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1. Short questions [3 points] For each of the following questions give a
concise answer within a few lines per question.

a) Give two examples of how discrete dynamical systems can be obtained
from continuous ones.

Solution
Strobing, surface of section, time discretisation, . . .

b) Explain how a discrete dynamical system of dimensionality one can be
visualised using a cobweb plot. Sketch the cobweb plot for a system
that in the long run show oscillations with period 2.

Solution
L.N. 2.1

c) Explain the difference between the microscopic view of diffusion (Brow-
nian motion) and a macroscopic view (Fick’s law).

Solution
In the microscopic view we consider the detailed motion of individual
particles, for example in a random walk. In the macroscopic view we
consider a concentration of particles whose gradients are smeared out
due to diffusion.

d) Explain why travelling wave solutions of reaction-diffusion equations
(for example Fisher’s equation) typically spread quicker than pure dif-
fusive spread (law of diffusion) in the diffusion equation.
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Solution
In logistic growth (used in Fisher’s equation) the per capita growth rate
ṅ/n is largest for small population sizes, meaning that the population
grows quickly when new regions are populated. The growth allow for
further diffusion into unpopulated regions, speeding up the spread.

e) Sketch the wave fronts of the spiral wave with the phase

ϕ(r, θ) = 4θ + r2 ,

where r and θ are radial and angular coordinates.

Solution

f) Explain the long-term behaviour of the SIR model:

Ṡ = −rSI , İ = rSI − αI , Ṙ = αI .

How does an epidemic die out in the SIR-model? You do not need to
do/show any calculations for this problem.

Solution
Bernhard’s L.N. 1.1 (the dynamics approaches I = 0 and S = const. >
0, so the epidemic dies out due to lack of infectives rather than lack of
susceptibles.

g) Explain the difference between stochastic and deterministic models for
disease spreading. Under which circumstances is it better to use a
stochastic model?

Solution
Bernhard’s L.N. 1, 2

h) Give two examples of systems for which the Kuramoto model may be
a reasonable model.

Solution
The Kuramoto model is a model that describes synchronisation of
weakly coupled oscillators. It may be a reasonable model for systems of
weakly coupled oscillators showing synchronisation. A few such exam-
ples are: neuronal synchronisation in the brain, synchronously flashing
fireflies, and synchronisation of metabolites (glycolytic oscillation) in
yeast cell.

2. Delay differential model for whales [2.5 points] The following
delay equation is a model for the population N(t) of sexually mature blue
whales

dN

dt
= −dN(t) +N(t− T )

[
d+ b

{
1−

(
N(t− T )

K

)z}]
. (1)

Here d is a death rate, b a birth rate, K a carrying capacity, z models a
non-linear per capita growth rate, and T is a delay time. Assume that all
parameters are positive, d > 0, b > 0, K > 0, z > 0, and T > 0.
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a) For the case z = 1, give a plausible motivation of the delay time T and
the forms of the two terms on the right-hand side in Eq. (1). Why are
there two terms proportional to the death rate, −dN(t) + dN(t− T )?

Solution
The delay time T is introduced to model the time between birth and
sexual maturity. At time t, the number of sexually mature blue whales,
N(t), decreases due to deaths with linear rate d and increases due to
whales born at time t−T becoming mature. At time t−T the rate of in-

dividuals being born is given by logistic growth, N(t−T )b
{
1−

(
N(t−T )

K

)z}
.

One may argue that if the death rate at time t− T is high, the proba-
bility of survival of the baby whales is increased due to reduced compe-
tition and this could be modelled by adding the positive contribution
+dN(t− T ).

b) Find all steady states (N(t) = const.) of the delay equation (1).

Solution
There are two steady states when N∗ = 0 and when N∗ = K.

c) Show that close to the most positive steady state, the dynamics of a
small perturbation η can be approximated by

dη

dt
≈ −dη(t) + (d− bz)η(t− T ) . (2)

Solution
The most positive steady state is N∗ = K. Write N = K + η and
expand the dynamics (1) to first order in η:

dη

dt
= −d(K + η(t)) + (K + η(t− T ))

[
d+ b

{
1−

[
K + η(t− T )

K

]z}]
≈ −d(K + η(t)) +K

[
d+ b

{
1−

[
1 + z

η(t− T )

K

]}]
+ dη(t− T )

= −dη(t) + (d− bz)η(t− T ) .

d) Using the ansatz η(t) = Aeλt in Eq. (2), derive an equation for λ.

Solution
Inserting the ansatz gives

λAeλt = −dAeλt + Aeλ(t−T )(d− bz) .

⇒ λ = −d+ (d− bz)e−λT .

e) By analyzing the equation for λ, contrast the dynamics for the two
special cases T = 0 and very large T (compared to all other time scales
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of the problem). Explain the relevant time scale of the dynamics in the
two cases.

Solution
When T = 0 we have

λ = −bz ,

i.e. we have a linearly decaying stable solution without oscillations
(regular one-dimensional system).

When T is very large we have

λ = −d+ (d− bz)e−λT ,

Assuming Re[λ] > 0 and taking T → ∞ we obtain λ = −d which
is smaller than zero, i.e. a contradiction with the assumption that
Re[λ] > 0. We assume instead that Re[λ] < 0 and that λ scales as
λ ∼ C/T with a constant C for large T (if λ does not depend on T , the
equation cannot be satisfied due to the exponential increase of eλT ).
The remaining equation C/T = −d + (d − bz)e−C ∼ 0 is solved by
Re[C] = log[1− bz/d] and we have a consistent solution with Re[λ] < 0
if d > bz.

For the T = 0 case, the decay rate 1/(bz) is the relevant time scale of
the dynamics: When the delay is removed from Eq. (1), the popula-
tion shows regular logistic growth with growth rate b which gives the
decay rate towards the steady state N∗ = K (the extra factor z is a
consequence of the non-linear modification).

For the case of very large T , the decay rate T/C is the relevant time
scale of the dynamics: it approaches infinity and a small perturbation
from the steady state N∗ = K therefore does not recover.
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3. Effect of spruce budworms on a forest [2.5 points] A model for
the effect of a constant spruce budworm population of size P on a forest
with average tree size S(t) (surface area of brances) and ‘energy reserve’
E(t) (health of the trees) is given by

Ṡ = rSS

(
1− S

KS

KE

E

)
Ė = rEE

(
1− E

KE

)
− P

B

S

, (3)

where rS, rE, KS, KE, and P are positive parameters.

a) Interpret all the terms in Eq. (3) from a biological viewpoint.

Solution
The tree size grows logistically with a carrying capacity that is pro-
portional to the energy reserve: in times of stress the surface area may
decline by death of branches or whole trees, and in good times E will
be close to its capacity KE.

The energy reserve also grows logistically with constant carrying capac-
ity, but is reduced proportional to B/S, the budworm concentration on
the trees.

b) Change to suitable dimensionless units and rewrite the system (3) in
terms of two dimensionless parameters.

Solution
Let t = τt0, S = xS0, E = yE0 to obtain

dx

dτ
= t0rSx

(
1− S0s

KS

KE

E0y

)
dy

dτ
= t0rEy

(
1− E0y

KE

)
− t0

E0

P
B

S0x

.

Choose t0 = 1/rS, E0 = KE S0 = KS to obtain

dx

dτ
= x

(
1− x

y

)
dy

dτ
= ρy (1− y)− α

x

.

where two dimensionless parameters ρ = rE/rS and α = PB/(rSKSKE)
have been introduced.

c) Using a graphical method, show that your dimensionless system in
subtask b) has two biologically relevant fixed points if B is small and
no relevant fixed point if B is large.

Solution
The condition ẋ = 0 implies that either x = 0 or x = y. The former
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solution is not valid in ẏ = 0, implying that any fixed points must have
x∗ = y∗. The condition ẏ = 0 becomes

α

ρ
= x2(1− x) .

The right-hand side increases from α/ρ = 0 at x = 0, reaches a maxi-
mum and crosses α/ρ = 0 at x = 1. Thus, if α/ρ is small enough (small
B), the system has two fixed points. When α/ρ is large (large B), the
system has no fixed points.

d) What is the critical level of B (in terms of the other dimensional pa-
rameters) above which no biologically relevant steady state exists.

Solution
A saddle-node bifurcation occurs at xc for which x2(1− x) is maximal:

0 =
d

dx
x2(1− x) = 2x− 3x2 ⇒ xc = 2/3

At this value α/ρ = 4/27, i.e. the critical value becomesBc = 4/27rEKSKE/P .

e) Given that one of the biologically relevant fixed points is stable if it ex-
ists, discuss possible effects of refuge and outbreaks of spruce budworms
on the forest.

Solution
As discussed in the course, spruce budworms essentially have two modes
of refuge (small B) and outbreak (large B). Upon refuge, the system
moves towards the stable fixed point if the initial average tree size is
large enough. During the outbreak, if the spruce budworm population
becomes large enough, no fixed points exists and the average tree size
is driven towards zero.

As a side remark it can be noted that even if the tree size does not go
to zero within the time of outbreak, the trees may not recover if the
size is too small. This is because a separatrix from the second fixed
point (saddle) bounds the basin of attraction of the stable fixed point.

4. A linear reaction-diffusion equation [2.5 points] Consider the
reaction-diffusion equation

∂u

∂t
= u+ 3v − 4 +

∂2u

∂x2

∂v

∂t
= −u− 2v + 3 + 8

∂2v

∂x2

. (4)

a) Find the homogeneous steady state (u∗, v∗) of the system (4) and de-
termine its stability.
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Solution
The steady state is given by

0 = u+ 3v − 4

0 = −u− 2v + 3

i.e. it is located at (u∗, v∗) = (1, 1).

The stability matrix becomes

J =

(
1 3
−1 −2

)
trJ = −1

det J = 1

i.e. the fixed point is stable.

b) By making an ansatz (u, v) = (u∗, v∗)+eλt+ikx(δu0, δv0) where (δu0, δv0)
are (possibly complex) constants, show that λ is related to k by

λ(k) =
1

2

(
−1− 9k2 ±

√
49k4 + 42k2 − 3

)
.

Solution
Inserting the ansatz into Eq. (4) gives

λeλt+ikxδu0 = eλt+ikxδu0 + 3eλt+ikxδv0 − k2eλt+ikxδu0

λeλt+ikxδv0 = −eλt+ikxδu0 − 2eλt+ikxδv0 − 8k2eλt+ikxδv0

⇒ 0 = −[λ− 1 + k2]δu0 + 3δv0

0 = −δu0 − [λ+ 2 + 8k2]δv0 .

The second eguation gives δu0 = −[λ+2+dk2]δv0 which when inserted
into the first equation gives

0 = [λ− 1 + k2][λ+ 2 + 8k2] + 3 = λ2 + (1 + 9k2)λ+ 1− 6k2 + 8k4

⇒ λ =
1

2
(−1− 9k2 ±

√
49k4 + 42k2 − 3)

Solutions corresponding to the positive sign in λ are unstable if λ > 0.

c) Show that the homogeneous steady state becomes unstable to linear
perturbations for a range of wave numbers k2

min < k2 < k2
max. Deter-

mine k2
min and k2

max.

Solution
Search for the limiting solutions where λ = 0:

0 = −1− 9k2 +
√
49k4 + 42k2 − 3

⇒ (1 + 9k2)2 = (49k4 + 42k2 − 3)

⇒ k4 − 6/8k2 + 1/8 = 0

⇒ k2 =
1

4
or k2 =

1

2
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It is straightforward to show that λ is positive for k2 between k2
min = 1/4

and k2
max = 1/2.

d) Assume that the spatial part of the system (4) is constrained to zero at
x = 0 and x = 3π. Which k-values in the ansatz in subtask b) are rel-
evant for this constrained dynamics? Sketch how a small perturbation
in this system evolves in time.

Solution
The spatial part of the ansatz in subtask b) consists of cos(kx) and
sin(kx) (real solutions can be obtained by superposition of positive
and negative modes with suitable complex prefactors δu0 and δv0).

Since the solution is zero at x = 0, we use sin(kx). The additional
constraint that the solution is zero at x = 3π gives allowed values of
k: k = n/3 with integer n. Consequently k2 = 0, 1/9, 4/9, 1, . . . . Only
k2 = 4/9 lies in the interval of unstable solutions.

The solution looks like a sine wave (n = 2) on the interval from zero
to 3π and is proportional to eλt, i.e. a small perturbation will increase
the concentration in the left half of the interval and reduce it on the
right half (or the opposite if the prefactor is negative).

5. Noise in time series [1.5 points] This problem is not part of the
course material this year.
Consider a general time series x0, x1, . . . generated by a map F:

xn+1 = F (xn) .

Measurement noise in a time series is defined as an error in the observations of
the values of xn. Dynamical noise is defined as an inherent disturbance to the
dynamics: at each time step an error is added to the map. In what follows,
you can assume the measurement and dynamical noises to be Gaussian white
noise with variance σ2.

a) Discuss and contrast the effects of measurement noise and dynamical
noise on a time series which is generated by linear (Malthus) decay
(negative growth rate).

Solution
Lecture notes 14.2

b) Assume that you are given noisy time series data and that you know
that the data is generated by an underlying linear (Malthus) decay
map. Discuss how the (negative) growth rate of the underlying map
can be recovered from the time series for the two cases of measurement
noise and of dynamical noise. For which case is it easier to reconstruct
the underlying growth rate?

Solution
Lecture notes 14.3

8 (8)


