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1. Short questions [3 points] For each of the following questions give a
concise answer within a few lines per question.

a) Explain what a period-doubling bifurcation is. In what kind of biolog-
ical models do you find them?

Solution
Found in discrete dynamical systems models. Bifurcations where eigen-
value of map passes through −1 (fixed point with stable oscillations
becomes unstable and periodic orbit forms).

b) The Lotka-Volterra model is given by

Ṅ = N(a− bP )

Ṗ = P (cN − d)

where a, b, c, and d are positive constants. Discuss the limitations of
this model and how it can be improved.

Solution
Lecture notes 3.1

c) Explain the difference between stochastic and deterministic growth
models. Under which circumstances is it better to use a stochastic
model?

Solution
Lecture notes 5.1
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d) In the law of diffusion for Brownian motion the mean-square displace-
ment is given by ⟨(x − x0)

2⟩ = 2Dt. Discuss whether the diffusion
constant D increases, decreases, or remains unchanged upon an in-
crease of the system temperature, or upon an increase of the particle
size.

Solution
D increases with temperature and decreases with particle size

e) Explain what a travelling wave is.

Solution
Solution to reaction diffusion equations that travels with constant speed
and shape.

f) A simple model for disease spreading is the SIR model

Ṡ = −rSI
İ = rSI − αI

Ṙ = αI

Explain what it means to have an epidemic in this model.

Solution
Bernhard’s Lecture notes p. 4

g) Can the SIR model describe an endemic disease, i.e. a disease with a
non-zero number of infectives in the long run? If not, suggest a model
that may describe an endemic.

Solution
In the SIR model the number of infectives eventually go to zero, so it
cannot describe an endemic disease. A simple modification that may
describe an endemic disease is the SIS model, where infectives becomes
susceptible after recovery. For example:

Ṡ = −rSI + αI

İ = rSI − αI

Has N = S + I = const. and

İ = r(N − I)I − αI

has a stable positive fixed point if α/r < N .

h) This problem is not part of the course material this year.
Explain how one can use linear filters to remove linear trends in a time
series.

Solution
Lecture notes 14.4.2
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2. Discrete model for harvesting [2.5 points] Consider the following
discrete model for a population of density uτ at discrete times τ = 0, 1, 2, . . .

uτ+1 =
bu2τ

1 + u2τ
− Euτ ,

with b > 2 and E > 0.

a) Interpret the two terms on the right-hand side from the viewpoint of
a model that describes regular harvesting of the population. Does the
population show a linear growth rate? What is the stability of the
steady state u = 0?

Solution
The first term describes the growth rate of individuals. It interpolates
u2 for small population sizes to a constant b (carrying capacity when
E = 0) due to finite system resources for large population sizes. The
second term describes harvesting at regular periods, proportional to
the population size with effort E.

Since the first term does not have a linear contribution for small pop-
ulation sizes, the stability for small population sizes is determined by
uτ+1 = −Euτ , i.e. the fixed point u = 0 has stable oscillations if E < 1
and shows growing oscillations if E > 1 (model is only relevant until
population first becomes negative though).

We could interpret the second term as the combination of linear growth
rate minus an actual harvest rate that is larger than the growth rate,
forcing the population extinct if it becomes too small.

b) Show that there exists a threshold Em such that when E > Em no
harvest can be obtained in the long run.

Solution
The fixed points are obtained by solving uτ+1 = uτ :

u∗1 = 0

u∗2 =
b−

√
b2 − 4(1 + E)2

2(1 + E)

u∗3 =
b+

√
b2 − 4(1 + E)2

2(1 + E)

The latter two fixed points only exist if they are real, i.e. if

b2 − 4(1 + E)2 > 0 ⇒ E < (b− 2)/2 ≡ Em .

Thus, when E > Em the only fixed point is the origin and it is stable
as discussed in subtask a).

c) Determine the bifurcation that is obtained when E passes Em, for ex-
ample by sketching a cobweb plot.

Solution
From the cobweb plot, the bifurcation is a saddle-node bifurcation.
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d) For 0 < E < Em, the model only has positive stable steady states u
between two positive values u− < u∗ < u+. Find analytical expressions
for u− and u+. Hint: To simplify the calculation, it may be useful to
sketch a cobweb plot.

Solution
Sketching the function F (u) = bu2/(1 + u2)− Eu shows that u∗3 is the
only stable positive steady state. When E is increased monotonically,
u∗3 moves from its maximal value when E = 0 to its minimal value
when E = Em (this can also be seen from the derivative du∗3/dE which
becomes smaller than zero in the range 0 < E < Em). We obtain the
limits

u1 = u∗3|E=Em = 1

u2 = u∗3|E=0 =
b+

√
b2 − 4

2
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3. Hypercycles [2.5 points] One example of a so called hypercycle for n
molecules with concentrations xi(t), with i = 1, 2, . . . , n is given by

ẋi = xi

(
xi−1 −

n∑
j=1

xjxj−1

)
. (1)

Assume periodic indices so that x0(t) = xn(t) and assume xi(t) > 0 for all i.

a) Consider the case n = 2 in Eq. (1). Derive the explicit equations for
ẋ1 and ẋ2 in terms of x1 and x2.

Solution

ẋ1 = x1 (x2 − 2x1x2) = x1x2 (1− 2x1)

ẋ2 = x2 (x1 − 2x1x2) = x1x2 (1− 2x2)

b) Determine all relevant fixed points and their stability for n = 2.

Solution
The system has a single isolated fixed point at (x∗1, x

∗
2) = (1/2, 1/2)

Jacobian

J(x∗1, x∗2) =
(
x2(1− 4x1) (1− 2x1)x1
(1− 2x2)x2 x1(1− 4x2)

)
=

(
−1/2 0
0 −1/2

)
trJ = −1

det J = 1/4

The fixed point is stable (star).

c) Determine the long-term fate for all relevant initial conditions when
n = 2. Hint: To come to a definite conclusion, it may simplify to
change to the coordinates x± = x1 ± x2.

Solution
In terms of the coordinates x± the dynamics becomes

ẋ± = ẋ1 ± ẋ2 = x1x2 (1± 1− 2(x1 ± x2)) =
1

4
(x2+ − x2−) (1± 1− 2x±)

In conclusion we have

ẋ− = −1

2
(x2+ − x2−)x−

ẋ+ =
1

2
(x2+ − x2−)(1− x+)

In the region of validity x1 ≥ 0 and x2 ≥ 0, meaning that x+ > x−.
The first equation therefore implies that x− approaches zero in the
long run and that the second equation implies that x+ approaches 1.
In conclusion, all relevant initial conditions approach the fixed point
x∗1 = x∗2 = 1/2.
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d) Now consider a general value of n. What is the long-term fate of the
sum N =

∑n
i=1 xi?

Solution
Using Eq. (1) we obtain

Ṅ =
n∑
i=1

xixi−1 −
n∑
i=1

xi

n∑
j=1

xjxj−1 =
n∑
i=1

xixi−1︸ ︷︷ ︸
A(t)

(1−N)

Since we assume all xi > 0, the prefactor A(t) is positive and the
long-term fate is N → 1, similar to the case of x+ in subtask c).

e) Explain the effect of the two terms xixi−1 and −xi
∑n

j=1 xjxj−1 in
Eq. (1). Explain how the hypercycle may model molecules that are
connected in a cyclic, autocatalytic manner.

Solution
In light of the result in subtask d), xi denotes fraction of molecules
of type i. The first term xixi−1 increases this fraction. The second
term −xiA(t) limits the fraction of molecule xi such that the total sum∑n

i=1 xi is constrained to 1 (in the long run). The growth for each xi
is catalysed by xi−1, forming a closed feedback loop with one molecule
serving as catalyst for the next.

4. Turing instability [2 points] Consider the following reaction-diffusion
equation in one spatial dimension for two reactants N1(x, t) and N2(x, t):

∂N1

∂t
= k1 − k2 + k4

N1

N2

+D1
∂2N1

∂x2

∂N2

∂t
= k4N

2
1 − k3N2 +D2

∂2N2

∂x2

. (2)

a) Discuss a mechanism which may cause the reaction-diffusion system in
Eq. (2) to form spatial patterns if D2 > D1.

Solution
See lecture 8. Activator-inhibitor system with N1 activator and N2

inhibitor.

b) Make Eq. (2) dimensionless by introduction of suitable dimensionless
variables u, v, x′, t′ such that the dimensionless reaction-diffusion sys-
tem becomes

∂u

∂t′
= α +

u

v
+ d

∂2u

∂x′2

∂v

∂t′
= u2 − v +

∂2v

∂x′2

. (3)

What are the expressions for α and d?
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Solution
Let N1 = Au, N2 = Bv, t = Ct′, x = Dx′ to get

∂u

∂t′
=
C

A

[
k1 − k2 +

k4A

B

u

v
+
AD1

D2

∂2u

∂x′2

]
∂v

∂t′
=
C

B

[
k4A

2u2 − k3Bv +
BD2

D2

∂2v

∂x2

]
Choose C = 1/k3, D =

√
D2/k3, B = k4/k3 and A = 1

∂u

∂t′
=
k1 − k2
k3︸ ︷︷ ︸
α

+
u2

v
+

D1

D2︸︷︷︸
d

∂2u

∂x′2

∂v

∂t′
= u2 − v +

∂2v

∂x2

c) Find the condition on α for which the homogeneous steady state of
Eq. (3) is stable.

Solution
The homogeneous steady state is obtained by solving Eq. (3) with
u(x′, t′) and v(x′, t′) constant:

0 = α +
u

v
0 = u2 − v

⇒ (u∗, v∗) = (− 1

α
,
1

α2
) .

Jacobian at the steady state

J(u∗, v∗) =
(

α2 α3

−2α−1 −1

)
trJ = α2 − 1

detJ = α2

The steady state is stable if |α| < 1.

Let δu(x, t) ≡ u(x, t)− u∗ and δv(x, t) ≡ v(x, t)− v∗ be small perturbations
from the homogeneous steady state. In the lectures we showed that the
ansatz (

δu
δv

)
= eλt+ikx

(
δu0
δv0

)
in Eq. (3) with small δu and δv gives rise to the following equation:

0 = [λ−K]

(
δu0
δv0

)
, where K = J(u∗, v∗)− k2

(
d 0
0 1

)
.

Here J is the Jacobian of the homogeneous system.
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d) Assume that α = 1/2. Analytically find the bifurcation point dc(kc)
for which space-dependent perturbations first become unstable, i.e. for
d > dc all space-dependent perturbations are stable and for d < dc at
least one wave number kc corresponds to unstable perturbations.

Solution
The matrix K takes the form

K =

(
α2 − k2d α3

−2α−1 −1− k2

)
=

(
1/4− k2d 1/8

−4 −1− k2

)
trK < 0

detK = 1/4 + (d− 1/4)k2 + dk4 .

Perturbations are unstable if detK(k2) < 0. First, solve detK = 0 in
terms of k2 to get

k2 =
1

8d
(1− 4d±

√
1− 24d+ 16d2) .

At the bifurcation we have a double root, i.e. solve 1− 24d+ 16d2 = 0
to get dc = (3±

√
8)/4. But only the smaller of these gives a positive

k2 ⇒ the bifurcation point is dc = (3−
√
8)/4

5. Kuramoto model [2 points] Consider a large number N of coupled
oscillators with phases θ1, θ2, . . . θN with the following time evolution

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (4)

a) Introduce the order parameters r(t) and ψ(t)

reiψ =
1

N

N∑
j=1

eiθj (5)

and show that Eq. (4) can be written on the following form

θ̇i = ωi +Kr sin(ψ − θi) .

Solution
Multiplication of Eq. (5) with e−iθi and evaluation of the imaginary
part gives

Im[rei(ψ−θi)] = Im

[
1

N

N∑
j=1

ei(θj−θi)

]

⇒r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) .
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Inserting this relation into Eq. (4) gives the sought form:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

= ωi +Kr sin(ψ − θi) .

b) Give interpretations of the order parameters r and ψ in subtask a).
Illustrate the distribution of oscillators when r ≈ 0 and r ≈ 1.

Solution
We note that the right-hand side of Eq. (5) is the arithmetic mean, eiθ,
over all oscillators. ψ = atan(sin θ/cos θ) is therefore the circular mean
(obtained by mean of cosines and sines of each angle and calculating
arctan) of θ (this gives a more reasonable value of an average phase,
since simply averaging angles arithmetically is unreliable because the
angles 0 and 2π should be considered equal).

r quantifies phase coherence: it will be unity if all phases are equal and
zero if phases are uniformly distributed.

c) Consider the limit where K → ∞ and assume that 0 < r < 1 initially.
What is the long term fate of the Kuramoto model in this limit? Which
value does r approach?

Solution
When K → ∞ we can neglect ωi and the dynamics of oscillator i
becomes

θ̇i = Kr sin(ψ − θi) .

The flow on the right-hand side shows that the dynamics rapidly ap-
proaches θi = ψ for all oscillators (except for the special case θi(0) =
ψ+π and ωi = 0). The oscillators therefore end up in phase and r → 1.

d) What does it mean to do a mean field analysis of the Kuramoto model?
What can the results of the mean-field analysis be used for?

Solution
Bernhard’s lecture notes, 7.4-7.6
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