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any other written material, calculator

Maximum score on this exam: 12 points (need 5 points to pass).
Maximum score for homework problems: 18 points (need 7 points to pass).
CTH ≥15 grade 3; ≥20 grade 4; ≥25 grade 5,
GU ≥15 grade G; ≥ 23 grade VG.

1. Short questions [3 points] For each of the following questions give a
concise answer within a few lines per question.

a) When we analyze growth models we often use dimensionless units. Ex-
plain what the advantage of using dimensionless units is.

Solution
It is instructive to convert to dimensionless units in problems that
are governed by many dimensional parameters, for example in typical
growth models. Using dimensionless units allows us to identify the
minimal number of dimensionless parameters. It also allows for easier
comparison between different dynamical quantities and different pa-
rameters. In dimensionless form the magnitude of all dimensionless
parameters can be directly related to the values of other parameters or
to unity (this simplifies numerical simulations or investigation of limit-
ing cases). In contrast, dimensional parameters must be compared to
all other combinations of parameters with the same dimension.

b) Consider a system with a single time delay T for the concentration c:

ċ = f(c(t), c(t− T )) .

The delay embedding below shows an example of c(t−T ) against c(t).
But in one-dimensional dynamical systems without time delay, the ex-
istence and uniqueness theorem states that trajectories cannot cross.
Explain why the curves may cross in the delay embedding below.
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c(t)

c(
t
−
T
)

Solution
In the delay embedding the change in c(t) at any time t is determined
by not only c(t), but also c(t − T ). Assuming that two curves of dif-
ferent history intersects at (c(t), c(t − T )), then at the next time step
both curves take the same value c(t+ δt), but the value of c(t−T + δt)
may differ. Therefore the curves may move to different locations in the
delay embedding at t+ δt even though they were at the same location
at t. To have a unique evolution of two curves, they must be equal for
the entire interval from t− T to t.

c) Consider a discrete growth model for a single species of population
size N :

Nτ+1 = F (Nτ ) .

The figure below shows a particular choice of the map F (solid line) and
the curve Nτ+1 = Nτ (dashed line). The scales of the axes are equal.
Classify all fixed points in this system with respect to their stability
and whether they show oscillations.

Nτ

N
τ
+
1

Solution
The system has two fixed points where Nτ+1 intersects Nτ . They are
both unstable because the slopes of the map at the fixed points are
larger than unity. The slope at the fixed point N∗ = 0 is positive and
there is therefore no oscillations in the vicinity of N∗ = 0. The slope
evaluated at the second fixed point is negative and therefore it exhibits
oscillations in its vicinity.

d) Explain what Brownian motion is. How does it differ from population
diffusion of biological species?

Solution
Lecture notes 6.1

2 (10)



e) Which (could be more than one) of the patterns below are consistent
with being formed in a Turing instability (diffusion driven instability)?
Explain your answer.

1. 2. 3. 4.

Solution
Answer: 1,3,4. When the domain size becomes smaller in the horizontal
direction, the values of the allowed wave numbers in the horizontal
direction becomes either smaller or remain constant. This is consistent
with pattern 1, but inconsistent with pattern 2. For patterns 3 and 4
the wave number of the pattern does not change significantly, which is
also consistent with patterns being formed in a Turing instability.

f) Explain what a metapopulation is. What is the rescue effect?
Note: The theory for this problem is not covered in the course this year

Solution
A metapopulation is a collection of unstable local populations that are
distributed on a number of spatially separated patches.

The population at isolated patches eventually goes extinct due to stochas-
tic fluctuations. Adding migration over a critical threshold, parts of
the populations from patches with large population could migrate to a
patch with small population to rescue it from extinction.

g) Consider a number N of coupled oscillators with phases θ1, θ2, . . . θN
with the following time evolution (Kuramoto model)

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (1)

Explain the assumptions made to derive Eq. (1).

Solution
A general ansatz of the dynamics for interaction between N oscillators
that oscillate with constant angular velocities in the absence of the
interaction is:

θ̇i = ωi +
N∑
j=1

Γij(θj − θi) .
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Here interactions only depends on the relative phases between oscil-
lators. Starting from this general form the Kuramoto model assumes
that there is full network connectivity of equal weight and that the
interactions take the form Γij(θj − θi) = K/N sin(θj − θi).

h) This problem is not part of the course material this year.
Discuss and contrast the effects of measurement noise and dynamical
noise on a time series which is generated by linear (Malthus) decay
(negative growth rate).

Solution
Lecture notes 14.2

2. A model for competition with Neanderthals [2.5 points] Con-
struct and analyze a mathematical model for competition between Nean-
derthal man (with population size N) and Early modern man (with pop-
ulation size E). Assume that the population sizes are large enough for a
continuous model to apply. Assume further that no reproduction occurs
between the two species. Assume that both species show linear (Malthus)
growth for small population sizes, with equal birth rate, b, and with different
death rates. The death rate of Neanderthal man is d (assume that d < b).
Due to better survival rate, the death rate of Early modern man is sd, where
s is a parameter taking a value in the range 0 < s < 1.
Include competition for resources into the model. Assume that both species
are equally competitive, i.e. assume that the per capita growth rates for both
species are reduced proportional to the total number of competing individu-
als.

a) Using the assumptions above derive growth equations for the popula-
tion sizes N and E.

Solution
One growth model that satisfies the assumptions above is the following:

Ṅ = N(b− N + E

K
− d)

Ė = E(b− N + E

K
− sd)

b) Analyze your model by finding its biologically relevant fixed points and
their linear stability. Discuss the possible long-term behaviours of the
system.

Solution
Fixed points:

(N∗
1 , E

∗
1) = (0, 0) (unstable node)

(N∗
2 , E

∗
2) = (0, K(b− ds)) (stable node)

(N∗
3 , E

∗
3) = (K(b− d), 0) (saddle)
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Long-term behaviour: By sketching the phase portrait it becomes ev-
ident that for initial conditions with finite population sizes the nean-
derthals goes extinct (the dynamics is attracted to the stable node).

c) By rewriting your growth model in terms of logarithmic derivatives:

d

dt
lnE = . . .

d

dt
lnN = . . .

it should be straightforward to find a solution for N in terms of E and
t. Write down the relation you find between N , E and t.

Solution
First rewrite

dt lnN = b− N + E

K
− d

dt lnE = b− N + E

K
− sd .

Subtract the equations

dt ln(N/E) = −d+ sd

⇒ ln(N/E) = (−d+ sd)t+ ln(N0/E0)

⇒ N/E = N0/E0e
(−d+sd)t .

Relation between population sizes

N(t) = E(t) exp[dt(s− 1)]

d) Historical data from the time of Neanderthals show that the lifetime
of an individual (both Neanderthal man and Early modern man) was
approximately 35 years and that the time to extinction, Text., of the
Neanderthals upon contact with Early modern man was Text. ≈ 10500
years.

Use these historical data in your model to roughly estimate the param-
eter s. Since the population never reaches zero in a continuous system,
you can approximate Text. as the time where N/E reaches five percent
of its initial value (it may be helpful to approximate five percent by
0.05 ≈ e−3). Interpret and discuss the value of s you find.

Solution
Death rate d = 1/35 y−1. Time to extinction Text = 10500 y. Solve
N/E = 0.05N0/E0 ≈ e−3N0/E0:

N(t)

E(t)
=
N0

E0

exp[dText.(s− 1)] = exp[−3]
N0

E0

⇒dText.(s− 1) = −3

⇒s = 1− 3

dText.
= 1− 105

10500
=

99

100
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gives s = 0.99. This value lies very close to unity, i.e. a very slight ad-
vantage of Early modern man drew the Neanderthals extinct according
to our model.

3. Harvesting strategies [2 points] A simple continuous growth model
with harvesting is given by

Ṅ = rN

(
1− N

K

)
− Y (N) .

Here N is the size of the population, r and K are positive constants, and
the yield Y (N) denotes removal rate of the population due to harvesting. A
good harvesting strategy (choice of Y (N)) is a strategy that gives a large
yield Y in the long run, while also allowing the system to quickly recover
from perturbations.

a) Consider the case Y (N) = EN , where 0 < E < r is a constant.
Determine the long-term yield of the system. What is the maximal
long-term yield?

Solution

Rewrite as a logistic equation

Ṅ = rN

(
1− N

K

)
− EN = (r − E)N

(
1−N

r

K(r − E)

)
.

This system has the stable steady state N∗ = K(r − E)/r. The long-
term yield is thus

Y (N) = EK(r − E)/r .

The maximal yield is Ymax = rK/4, obtained by choosing E = r/2.

b) Redo the analysis in subtask a) for the case Y (N) = DN2, where D is
a positive constant.

Solution
Rewrite as a logistic equation

Ṅ = rN

(
1− N

K

)
−DN2 = rN

(
1−N

DK + r

rK

)
.

This system has the stable steady state N∗ = Kr/(DK + r). The
long-term yield is thus

Y (N) = D(Kr/(DK + r))2 .

The maximal yield is Ymax = rK/4, obtained by choosing D = r/K.
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c) Discuss which of the two harvesting strategies in subtasks a) and b) is
better. Explain which properties of this strategy makes it better. To
come to a definite conclusion, it may be a good idea to, for each of the
two strategies, consider the recovery time due to linear perturbations.

Solution

The two harvesting strategies have the same maximal yield.

Close to the stable fixed point N∗ = K in the logistic model, the time
scale of recovery due to linear perturbations is

τ = −[f ′(N∗)]−1 =
1

r
,

i.e. τ depends only on the linear growth rate.

For the harvesting strategy Y = EN , the linear growth rate is r − E
and the time scale becomes τ1 = 1/(r − E).

For the harvesting strategy Y = DN2, the linear growth rate is r and
time scale becomes τ2 = 1/r.

Since 0 < r < E, the second strategy recovers quicker from perturba-
tions for any parameter combinations. For example, at the maximum
yield we have τ1 = 2/r and τ2 = 1/r. Since the second harvesting
strategy has a shorter time scale of recovery, we expect it to be a bet-
ter strategy within our model.

This makes sense because the effect of the second strategy is solely to
reduce the stable steady state of the system by modifying the effective
carrying capacity, while keeping the linear growth and stability intact.
The first strategy on the other hand modifies both the carrying capacity
and reduce the growth rate and stability of the system.

4. Spirals in reaction diffusion equations [2 points]

a) Give three examples where reaction-diffusion processes are of impor-
tance in mathematical models of biological systems.

Solution
E.g. Population migration, infection outbreaks, chemical reactions,
BZ reaction, pattern formation and morphogenesis, neural activity in
brain, electrical patterns in heart, signalling patterns of slime mold.

b) Typical solutions to reaction-diffusion equations are travelling waves
and spiral waves. A typical ansatz for the phase of a simple rotating
spiral is

ϕ(r, θ, t) = Ωt±mθ + ψ(r) , (2)

where ϕ is the phase, t is time, r and θ are the radial and angular
coordinates in a polar coordinate system, Ω is a constant parameter,
m is a positive integer, and ψ(r) is some function of r.
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Explain what is meant by a ‘phase’ and a ‘wave front’.

Give interpretations of Ω, m and ψ(r) in Eq. (2).

Solution
The phase is an angular coordinate that characterises the state of an
oscillator. A wave front consists of regions of constant phase.

The parameters Ω (angular velocity), m (number of arms), and ψ(r)
(radial dependence of spiral arm) describe the spiral shape of the wave
fronts.

c) Sketch the wave fronts for the following set of parameters at t = 0:

ψ(r) = r , m = 2

d) Discuss how Eq. (2) could be applied in the context of reaction diffusion
equations.

Solution
The form (2) can be used as an ansatz in a reaction-diffusion equation
of dimension larger than one (similar to the travelling wave ansatz in
order to numerically find rotating spiral solutions.)

5. Disease spreading in large but finite populations [2.5 points]
Assume that a population consists of N (constant in time) individuals. Each
individual is either infected by, or susceptible to a disease. Assume that
recovered individuals once again become susceptible (SIS model).

a) In the lecture notes and the hand-ins a Master equation was derived
that describes the probability ρ to observe n infected individuals. Dis-
cuss what it means that this Master equation has a ‘quasi-steady state’.

Solution
Bernhard’s lecture notes, Section 4

An approximate solution for the quasi-steady state that is valid for large N
can be found by an ansatz

ρ(I) = exp [−NS0(I)− S1(I)− 1/NS2(I)− . . . ] ,

where I = n/N is the ratio of infected individuals. To lowest order in N−1,
the dynamics of I(t) and p(t) = S ′

0(I) was shown to follow Hamilton’s equa-
tions

İ = βI(1− I)ep − γIe−p

ṗ = −β(1− 2I)(ep − 1)− γ(e−p − 1) .
(3)

Here β and γ are positive parameters.
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b) A disease is said to be endemic if it can sustain a finite number of
infected individuals in the long run. Find a condition on the parameters
β and γ for which the disease described by Eq. (3) is endemic in the
limit N → ∞ (corresponding to p→ 0).

Solution
When p = 0, we have the dynamics

İ = I[β − γ − Iβ]

This reaches a non-zero steady state if β > γ, which is therefore the
condition for the disease to be endemic.

c) In the endemic limit found in subtask b), find all biologically relevant
fixed points of Eq. (3) that lies on either of the axes I = 0 or p = 0
and determine their stability. To speed up this calculation, it may be
helpful to first evaluate the trace of the stability matrix (Jacobian) for
general points (I, p) and to think about how the flow behaves along the
axes I = 0 and p = 0.

Solution
For p = 0 we have the fixed points:
(I∗1 , p

∗
1) = (0, 0)

(I∗2 , p
∗
2) = (1− γ/β, 0)

When I = 0 we get

βep + γe−p = +γ + β

e2p − γ + β

β
ep +

γ

β
= 0

⇒ ep = 1 (case p = 0 already treated) or ep =
γ

β

We have the fixed point:
(I∗1 , p

∗
1) = (0, log( γ

β
))

Either by explicit evaluation, or by using that the dynamics is Hamil-
tonian and hence volume preserving, the trace of the stability matrix
is zero. The eigenvalues becomes

λ± = ±
√

−4 det J .

Assuming det J ̸= 0, we either have a saddle point or a center. Since
ṗ = 0 when p = 0, and since İ = 0 when I = 0, the flow moves along
the axes and therefore centers are ruled out. All the fixed points must
therefore be saddle points. It can be noted that for the case det J = 0
both eigenvalues are zero, but this is not consistent with a sketch of
the flow along the axes I = 0 or p = 0 in the endemic limit (β > γ).

d) In the endemic limit found in subtask b), the dynamics (3) has one
additional biologically relevant fixed point (I∗,p∗) with I∗ > 0 and
p∗ < 0. You can assume that this fixed point is a center.
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Contrast the case p = 0 (corresponding to N → ∞) and p > 0 (corre-
sponding to large but finite N). In particular, discuss the implications
of a finite population size for endemic diseases. It could be helpful to
sketch the phase portrait for the dynamics in Eq. (3) for non-negative
values of I.

Solution
Bernhard’s lecture notes, p. 36
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