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1. Effect of fishing on a predator-prey model [2 points] Consider a
simple predator-prey model (Lotka-Volterra)

Ṅ = N(a− bP )

Ṗ = P (cN − d) .
(1)

Assume N denotes the size of a prey population of fish that is eaten by
predator fish of population size P . Assume a, b, c, d are positive constants.

a) Explain the forms of the terms on the right-hand side of Eq. (1).

Solution
See lecture notes, Section 3.1.1

b) Modify the model in Eq. (1) to include the effect of fishing by humans.
Assume that the fishing tools do not distinguish between predator and
prey fish, and assume that the total number of fish caught is propor-
tional to the total fish population with proportionality coefficient f .

Solution
To include fishing as described above in the model in Eq. (1), we remove
both predators and prey with the same rate coefficient. The modified
model is therefore

Ṅ = N(a− bP )− fN
Ṗ = P (cN − d)− fP .
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c) Find all the steady states of the resulting model. How does the number
of biologically relevant steady states depend on f?

Solution
The resulting model has two fixed points:
(N∗, P ∗) = (0, 0) and (N∗, P ∗) = ((d+ f)/c, (a− f)/b). if f < a there
exists a non-trivial steady state, otherwise not.

d) Most solutions of Eq. (1) show oscillations with some period T . It is
possible to show that the averages of the populations over one period
(denoted N and P ) are equal to the values of the non-trivial steady
state (denoted N∗ and P ∗), i.e.

N ≡ 1

T

∫ T

0

dt′N(t′) = N∗ =
d

c
, P ≡ 1

T

∫ T

0

dt′P (t′) = P ∗ =
a

b
.

By using this result, explain what effect fishing has on the average
populations of prey and predators.

Solution
When f < a, using that the model in subtask b) is on the form (1) with
modified parameters, the average N and P are equal to the non-trivial
fixed point found in subtask c:

N =
d+ f

c

P =
a− f
b

.

Comparing to the case without fishing

N0 =
d

c

P 0 =
a

b
,

we see that the prey population increases with increasing fishing, and
the predator population decreases with increasing fishing. However,
there is a limit, as f becomes larger than a, the non-trivial fixed point
ceases to exist and the effect of fishing is to drive both populations
extinct in the model.

2. Discrete growth models [2.5 points] Consider the following discrete
growth model for a population of size N :

Nt+1 = Nt exp

[
r

(
1− Nt

K

)]
, (2)

where r and K are positive parameters.
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a) Determine the non-negative steady states of the model (2) and give an
interpretation of the parameter K.

Solution
Writing Eq. (2) as Nt+1 = F (Nt), the steady states are obtained by
solving F (Nt) = Nt. We get N∗1 = 0 and N∗2 = K. We interpret K as
the carrying capacity for the population.

b) Find a limit where the model (2) shows discrete Malthus growth:

Nt+1 = Nt(1 + r) .

Give an interpretation of r in this limit (note that r must be dimen-
sionless in Eq. (2)).

Solution
For small values of r and N/K the right-hand side of Eq. (2) simplifies
to Nt(1 + r), which is on the form of discrete Malthus growth.

The solution to this equation is Nt = N0(1+r)t = N0e
t log(1+r) ∼ N0e

rt,
where we used that r is small. Since t takes discrete values at regular
time intervals (for example at each generation of the population) we
interpret r as the average growth rate during each time interval times
the length of the time interval.

c) Determine the stability of the fixed points found in subtask a).

Solution
The stability can be read off from

F ′(Nt) =
(

1− r

K
Nt

)
exp

[
r

(
1− Nt

K

)]
F ′(N∗1 ) = er > 1

F ′(N∗2 ) = 1− r

Thus N∗1 is always unstable and N∗2 is stable if r < 2 and unstable
otherwise.

d) Show that Eq. (2) has a period-doubling bifurcation at r = 2.

Solution
One way to solve this problem is to solve it graphically, by sketching
F (Nt) and F (F (Nt)) when Λ = F ′(N∗2 ) becomes smaller than −1.

Another way is to observe that close to the fixed point N∗2 = K the
exponent in the map (2) can be approximated by 1 + r

(
1− Nt

K

)
, i.e.

the map locally behaves as the logistic map and one can proceed the
analysis similar to that of the logistic map considered in the lectures.

As a third alternative we note that we have a period-doubling bifurca-
tion if the map F (Nt) ≡ Nt+1 has a bifurcation such that F ′(N∗) passes
−1 (such that no stable fixed points exists after the bifurcation) and the
second-order iterate F (F (Nt)) has a supercritical pitchfork bifurcation
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(such that the second-order iterate has two stable fixed points, in ad-
dition to the unstable fixed points of F (Nt)). Showing these properties
for the map (2) shows the period-doubling bifurcation.

3. Reaction-diffusion and travelling waves [2.5 points] Consider a
reaction-diffusion equation in one spatial dimension

∂n

∂t
(x, t) = rn(x, t)

(
1− n(x, t)

K

)(
n(x, t)

A
− 1

)
+D

∂2n

∂x2
(x, t) . (3)

Here n(x, t) denotes a population density of some species at position x at
time t. Moreover r, K, A and D are non-negative parameters. Assume that
A < K.

a) First consider the case where D = 0 in Eq. (3) and consider a homo-
geneous initial condition (i.e. you can neglect the spatial coordinate).
By for example sketching the resulting flow, explain and give possible
interpretations of the remaining parameters r, K, and A.

Solution
The resulting flow

dn

dt
(t) = rn(t)

(
1− n(t)

K

)(
n(t)

A
− 1

)
has three fixed points located at n∗ = 0, n∗ = A and n∗ = K.

The parameters r and K are the (in this case negative) growth rate
for small populations and the carrying capacity for the population.
The additional parameter A introduces a threshold below which the
growth rate is negative (Allee effect), and above which the growth rate
is positive. This could model a population that suffers if the number of
individuals are too few (some examples could be weaker group defence
against predators or inbreeding when the population density is low).

b) To simplify the analysis, let r = 1, A = 1/2, K = 1 and D = 1.
Assume that n(x, t) = u(z) only depends on the combination z = x−ct.
Starting from Eq. (3) derive an ordinary differential equation for u(z).

Solution
For this coordinate change partial derivatives transform as

∂n

∂t
= −cdu

dz
∂n

∂x
=

du

dz

and Eq. (3) gives the ordinary differential equation

−c d

dz
u(z) = u(z) (1− u(z)) (2u(z)− 1) +

d2

dz2
u(z) .
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c) Does the resulting equation in subtask b) allow travelling wave solu-
tions? If so, for which values of c?

Solution
Introduce v = du/dz to write the equation for z as a first-order system

du

dz
= v

dv

dz
= −u(1− u)(2u− 1)− cv .

Travelling-wave solutions are orbits connecting fixed points in the u-v
plane. The fixed points are given by v∗ = 0 and u∗1 = 0, u∗2 = 1/2 and
u∗3 = 1. The Jacobian evaluated at these fixed points is

J(u) =

(
0 1

1− 6u+ 6u2 −c

)
J(u∗1) =

(
0 1
1 −c

)
J(u∗2) =

(
0 1
−1/2 −c

)
J(u∗3) =

(
0 1
1 −c

)
.

The corresponding eigenvalues are

λ1,± =
1

2
(−c±

√
c2 + 4)

λ2,± =
1

2
(−c±

√
c2 − 2)

λ3,± =
1

2
(−c±

√
c2 + 4) .

Thus both u∗1 = 0 and u∗3 = 1 are saddle points no matter what c is.

u∗2 = 1/2 is either a stable spiral if |c| <
√

2 or a stable node if |c| >
√

2.
Sketching the phase-diagram it is possible to argue that the saddle
points must be connected to the stable fixed point for any value of c.
This implies that the system permits travelling-wave solutions for all
values of c.
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4. Diffusion-driven instability and pattern formation [2 points]
Turing showed that a two-dimensional reaction-diffusion system

∂u

∂t
= γf(u, v) +∇2u

∂v

∂t
= γg(u, v) + d∇2v

is unstable to spatial wave-like perturbations in a range of wave numbers if
the following conditions hold

trJ < 0

det J > 0

dJ11 + J22 > 0

(dJ11 + J22)
2

4d
> det J .

Here Jij are elements of the Jacobian matrix of the homogeneous steady state

J = γ

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
.

a) Consider the following reaction-diffusion system in one spatial dimen-
sion written in dimensionless units:

∂u

∂t
=
u2

v
− bu+

∂2u

∂x2

∂v

∂t
= u2 − v + d

∂2v

∂x2
.

(4)

Here b and d are positive constants.

Determine the positive spatially homogeneous steady states of the sys-
tem (4). Is this state stable?

Solution
The positive steady state is (u∗, v∗) = (1/b, 1/b2). The Jacobian evalu-
ated at the fixed point is

J(u∗, v∗) =

(
b −b2

2/b −1

)
trJ = b− 1

detJ = b .

When b < 1 the fixed point is stable (spiral), otherwise it is unstable
(spiral or node depending on b).

b) Determine the conditions for the steady state in subtask a) to be
driven unstable by diffusion. Sketch the b-d parameter space in which
diffusion-driven instability occurs.

6



Solution
Using Turing’s conditions for the Jacobian gives b < 1 (homogeneous
state should be stable) and

dJ11 + J22 = db− 1 > 0

(dJ11 + J22)
2

4d
=

(bd− 1)2

4d
> det J = b .

giving an additional constraint on the parameters: bd > 3 + 2
√

2 (the
condition bd < 3 − 2

√
2 is neglected because the additional condition

bd > 1).

[Sketch]

c) Explain without calculations what it means that a system has a diffusion-
driven instability, for example by sketching the response of the system
to a small, suitable perturbation.

Solution
Lecture notes 8

d) An observation in nature is that there is (almost) no animal with
striped body and spotted tail, but there is animal with spotted body
and striped tail. Give one possible explanation (without calculations)
for this observation.

Solution
Lecture notes 8

5. Disease spreading in large but finite populations [2 points] As-
sume that a population consists of N (constant in time) individuals. Each
individual is either infected by, or susceptible to a disease. Assume that
recovered individuals once again become susceptible (SIS model).

a) Denote the number of susceptible and infected individuals by S and I
respectively. Assume that the rate at which susceptibles S turn into
infectives I is βSI/N and that the rate at which infectives turn into
susceptibles is γI, where β and γ are positive constants.

Explain why the forms of these rates are reasonable. In particular, give
an interpretation of β considering that the first rate is divided by the
total population size N .

Solution
The rate at which susceptibles turn into infectives is proportional to the
rate at which infected individuals encounter and infect susceptible in-
dividuals. β denotes the number of disease-spreading contacts per unit
time for an infected individual. However, only contacts with suscepti-
bles generate new infectives, hence each infected individual generates
βS/N new infectives per unit time. Finally, the rate at which suscep-
tibles turn into infectives is proportional to the number of infectives,
βSI/N .

7



The rate at which infectives turn into susceptibles is proportional to
the number of infectives, i.e. infectives automatically recovers from the
disease at some rate γ.

b) Assume that in a short time interval the number of infected individuals
changes by +1 or −1 because of infections or due to recovery.

Using the rates introduced in subtask a), write down a Master equation
for the probability ρn(t) to observe n infected individuals at time t in
a finite population consisting of N individuals.

Solution
Problem set 3.1b)

c) Contrast stochastic to deterministic models of disease spreading. Dis-
cuss under what conditions one should use either and discuss typical
differences between the dynamics of the models.

6. Phase resetting of oscillators [1 point] Note: The theory for this
problem is not covered in the course this year

a) Explain what is meant by phase resetting of an oscillating system.

Solution
Lecture notes 13.3

b) Give two examples of applications of phase resetting.

Solution
Lecture notes 13.3
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