
Solutions/answers to selected problems of the exam

16:th of March in Computational Biology A 2017

1. Pest control [2 points] Assume that a population of size N(t) of
fertile insects shows the following time evolution:

Ṅ = bN − dN − cN2 , (1)

where b, c and d are positive parameters and b > d.

a) Explain the form of Eq. (1). Give plausible interpretations for the
parameters b, d, and c. How large is the carrying capacity of the
environment?

Solution
The first and second term are describe changes due to linear birth of
rate b and linear death of rate d. The third term is a higher-order death
term proportional to the population size. It limits the growth rate due
to finite resources in the system. There is no corresponding birth term,
i.e. it is assumed that the birth rate is not affected by the population
size.

The carrying capacity K is given by the population size at the non-zero
fixed point, N∗ = (b− d)/c, of the system: K = (b− d)/c

b) One method for pest control of insects is to release a number of sterile
insects into a population. Assume that a population of sterile insects is
introduced into a population of N fertile insects. The population size
s of sterile insects is kept constant by a steady supply of new sterile
insects balancing deaths.

Assume that the sterile insects show identical behaviour as fertile in-
sects (equal mating rate and equal competition for resources), with
the only exception that mating involving sterile insects results in failed
births. Assume moreover that the sterile insects are male or female
with equal probability, i.e. you do not need to take the sex of the
insects into consideration.

Modify Eq. (1) to model how a number s of sterile insects affect the
time evolution of N .

Solution
Eq. (1) must be modified in two ways. First, the birth rate is modified
to take into account that only a fraction N/(N + s) of births results in
offsprings. Second, we need to add the population size of sterile insects
to the death rate of N due to competition for resources. This gives the
modified growth dynamics:

Ṅ =
N

N + s
bN − dN − cN(N + s) . (2)
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c) Show that the ratio ρ = N/(N + s) satisfies the following dynamics

ρ̇ = ρ((bρ− d)(1− ρ)− cs) .

Solution
We have

ρ̇ =
d

dt

N

N + s
=

Ṅ

N + s
− NṄ

(N + s)2
=
Ṅ

N
ρ(1− ρ)

= [bρ− d− c(N + s)] ρ(1− ρ)

= [(bρ− d)(1− ρ)− cs] ρ .

where we used Eq. (2) and that N + s = −s/(ρ− 1).

d) Assume that d = 0, b = 1, and c = 1. Under this assumption, determine
the smallest number of sterile insects, sc, needed to make the insect
population go extinct for any allowed initial value of ρ. Solution
The dynamics has the flow

f(ρ) = ρ(ρ(1− ρ)− s) .

We want to find s = sc such that f(ρ) < 0 for all allowed ρ (0 ≤ ρ ≤ 1).
To this end, find the zeroes of f(ρ): ρ∗1 = 0, ρ∗2 = (1 +

√
1− 4s)/2,

ρ∗3 = (1 −
√
1− 4s)/2. If s > 1/4, there is no crossing and the flow

is negative everywhere (can be seen by testing one value, for example
f(ρ = 1/2) = 1/2(1/4− s) < 0 if s > 1/4). If s < 1/4 two fixed points
are formed at ρ = 1/2 and it is straightforward to check that the flow
is positive in between them: f(ρ = 1/2) = 1/2(1/4 − s) > 0 when
s < 1/4.

In conclusion, sc = 1/4.

As a side remark, in the current units, the carrying capacity is unity,
i.e. we need to at least maintain a sterile population of size one quarter
of the carrying capacity to make the population go extinct. The time
until extinction goes to infinity as s approaches 1/4 from above (c.f.
ghost of a saddle point).

Alternative solution 1 The fixed point at ρ = 0 has f ′(0) = −s, i.e.
is always stable. The other fixed points do not exist when s < 1/4 ⇒
sc = 1/4.

Alternative solution 2 Flow is negative, ρ̇ < 0, if ρ(1 − ρ) − s < 0,
i.e. if s < ρ(1 − ρ). The curve ρ(1 − ρ) has maximum value 1/4 at
ρ = 1/2 ⇒ sc = 1/4.

2. SIRS model [2 points] A simple model for the spreading of influenza
is the SIRS model (in contrast to the SIR model discussed in the lectures).
The SIRS model has the following dynamics:

Ṡ = −rSI + γR

İ = rSI − αI

Ṙ = αI − γR .

(3)
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The different population sizes correspond to susceptibles S(t), infectives I(t),
and removed R(t). Assume that the initial population size is N = S(0)+I(0)
and that R(0) = 0.

a) Give brief, plausible explanations of the different parameters r, α, and
γ (all assumed to be positive).

Solution
The parameter r is the rate at which the influenza spreads due to
encounters between susceptibles and infectives. The parameter α is
the removal rate of infectives to the removed group. The parameter γ
is the rate at which removed population becomes susceptible. Due to
the parameter γ we expect the influenza to have small mortality rate
(it would be strange if dead individuals suddenly became reanimated
as susceptibles).

b) What are the differences between Eq. (3) and the SIR model discussed
in the lectures?

Solution
The SIRS model has an additional removal term (−γR) of removed
species and the same amount (+γR) is added to the susceptibles. This
could model a situation where the removed population consists of im-
mune individuals that slowly loose their immunity and become suscep-
tible again with rate γ.

c) Show that Eq. (3) can be written as a two-dimensional system:

Ṡ = f(S, I)

İ = g(S, I) .

Explicitly write down f(S, I) and g(S, I).

Solution
Eq. (3) preserves the population size d

dt
[S + I +R] = 0 ⇒ S + I +R =

N = const.. Substitute this expression for R in the equation for S to
get

Ṡ = −rSI + γ[N − S − I]︸ ︷︷ ︸
f(S,I)

İ = rSI − αI︸ ︷︷ ︸
g(S,I)

.

d) The system in subtask c) has two possible fixed points, determine these.
Give a condition on the parameters for which the system has two bio-
logically relevant (non-negative I and S) fixed points.

Solution
The system always has a fixed point at (S∗

1 , I
∗
1 ) = (N, 0). There is an

additional possible fixed point at (S∗
2 , I

∗
2 ) = (α/r, γ(Nr−α)/(r(α+γ))).
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The system has two distinct biologically relevant fixed points if N >
α/r.

e) Determine the stability of the fixed points for the case where the system
has one biologically relevant fixed point, and for the case where the
system has two biologically relevant fixed points. Discuss the long-
term fate of the system for these two cases.

Solution
The Jacobian is

J(S, I) =
(
−rI − γ −rS − γ

rI rS − α

)
.

For the first fixed point

J(S∗
1 , I

∗
1 ) =

(
−γ −rN − γ
0 rN − α

)
trJ(S∗

1 , I
∗
1 ) = rN − α− γ

det J(S∗
1 , I

∗
1 ) = γ(α− rN) .

For the second fixed point (assuming N > α/r)

J(S∗
2 , I

∗
2 ) =

(
−γNr+γ

α+γ
−α− γ

γNr−α
α+γ

0

)
trJ(S∗

2 , I
∗
2 ) = −γNr + γ

α + γ
< 0

det J(S∗
2 , I

∗
2 ) = γ(Nr − α) > 0 .

The second fixed point has negative trace and positive determinant and
must therefore be stable (node or spiral) when it exists (N > α/r).

The eigenvalues of the first fixed point can be determined using

λ± =
1

2

(
trJ±

√
(trJ)2 − 4 det J

)
to get (for case N > α/r)

λ− =
1

2

(
rN − α− γ −

√
r2N2 + α2 + γ2 − 2rNα− 2rNγ + 2αγ − 4γα + 4γrN

)
=

1

2

(
rN − α− γ −

√
(rN − α + γ)2

)
=

1

2
(rN − α− γ − rN + α− γ)

= −γ < 0

λ+ = rN − α > 0 ,

and to get (for case N < α/r)

λ− = rN − α < 0

λ+ = −γ < 0 .
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In conclusion, when N < α/r the system has a single fixed point that is
a stable node with I = R = 0 and S = N , i.e. the influenza disappears
and the full population is healthy. In contrast, for population sizes over
the threshold, N > α/r, the first fixed point is unstable (saddle point)
and the population is drawn to the second, positive fixed point. Thus,
the influenza stays in the population for long times with a fraction of
infected persons that depend on the parameters and the population
size N .

3. Reaction kinetics [2 points] Assume that a chemical reaction pro-
ceeds as follows

S + E
k1−−⇀↽−−
k−1

SE
k2−−→ P + E , (4)

where S denotes a substrate, E an enzyme, and P a product. The parameters
k1, k−1 and k2 are rate constants.

a) What is the law of mass action? What does it assume about the un-
derlying chemical reaction?

Solution
The law of mass action states that reaction rates are proportional to
the concentrations of the reactants (encounter rates between chemicals
as they diffuse around in a solution). The proportionality coefficients
are rate constants of the reaction.

The law of mass action assumes that the reaction is slow and that the
chemicals are well mixed.

b) Use the law of mass action together with the reaction in Eq. (4) to
set up a dynamical system for the concentrations s = [S], e = [E],
c = [SE] and p = [P ] of the reactants. Assume appropriate initial
conditions, that are determined just before the reaction starts.

Solution
Using the law of mass action Eq. (4) gives the system:

ṡ = −k1es+ k−1c , s(0) = s0 (5)

ė = −k1es+ (k−1 + k2)c , e(0) = e0 (6)

ċ = k1es− (k−1 + k2)c , c(0) = 0 (7)

ṗ = k2c , p(0) = 0 . (8)

c) What is the role of the enzyme E? How is this role reflected in the
dynamics you found in subtask b)?

Solution
The role of the enzyme is as a catalyst, i.e. it should speed up the
reaction without getting consumed (this property typically implies that
it is enough with very small enzyme concentrations).
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Without the enzyme, there is no reaction path to the product and the
substrate remains at constant concentration in Eq. (8). I.e. the enzyme
catalyzes the reaction. The enzyme is found in both concentrations
c and e. From the dynamics (8), d

dt
[c + e] = 0, implying that the

total amount of enzyme is unchanged. For large times, the system (8)
approaches a state where s = c = 0 and e = e0, i.e. the enzyme is not
consumed.

d) Consider the following reaction between two reactants A and X

A+X
k1−−⇀↽−−
k−1

2X .

Assume that A is maintained at constant concentration a = [A] =
const. Using the law-of mass action, set up a dynamical system for the
concentrations a = [A] and x = [X].

Solution
The dynamical system becomes

ẋ = k1ax− k−1x
2 , (9)

i.e. a system of the form of logistic growth.

e) How would the dynamics change in subtask d) if you remove the as-
sumption that a is maintained at constant concentration, i.e. if the
concentration a is only influenced by the reaction and not from any
external sources?

Solution
If there is no inflow of reactant A, then the concentration a will change
with time. Eq. (9) is modified as

ẋ = k1ax− k−1x
2

ȧ = −k1ax+ k−1x
2 .

It follows that a+ x = a0 + x0 is constant. Inserting this relation into
the equation for x, we have

ẋ = k1(a0 + x0)x− (k−1 + k1)x
2 ,

i.e. x still satisfies a logistic equation with modified growth rate and
carrying capacity compared to the case in subtask d).

4. Macroscopic diffusion [2 points] The diffusion equation in one spa-
tial dimension can be written on the form

∂n

∂t
= D

∂2n

∂x2
, (10)

where n is a concentration, time t has unit T and position x has unit L.
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a) What are the dimensional units of the diffusion coefficient

i) for the diffusion equation in one spatial dimension?

ii) for the diffusion equation in two spatial dimensions?

iii) if the concentration n (unit L−d, where d is the spatial dimension)
in Eq. (10) was replaced by a probability density Q?

Solution
The units of the diffusion coefficient are L2/T for all three cases.

b) Derive the one-dimensional diffusion equation (10) starting from Fick’s
law.

Solution
Fick’s law states that matter is transported from high concentrations
to low concentrations according to:

j(x, t) = −D∂n
∂x

.

The change of concentration in a small interval δx is equal to influx
minus outflux

is

∂

∂t

∫ x+δx

x

dx′n(x′, t) = j(x, t)− j(x+ δx, t) . (11)

Divide by δx and let δx→ 0 to get

∂n

∂t
= −∂j

∂x
= D

∂2n

∂x2

i.e. same as the diffusion equation Eq. (10).

c) Explain how the derivation in subtask b) must be modified to result in
Fisher’s equation instead of the diffusion equation. Write down Fisher’s
equation.

Solution
Fisher’s equation assumes a reaction term on the form of a logistic
growth. We therefore need to add a source term f(x, t) = rn(x, t)(1−
n(x, t)/K) to the right-hand side of the continuity equation (11), i.e.
the concentration can change due to flux over the boundaries or due to
local production.
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Fisher’s equation becomes:

∂

∂t
n(x, t) = rn(x, t)

(
1− n(x, t)

K

)
+D∇2n(x, t) . (12)

d) In one of the problem sets you simulated a one-dimensional version of
Fisher’s equation. The length unit in your simulations was (at least
supposed to be) unity. Under what conditions do you expect this to be
a good choice for your simulations?

Solution
In the simulations the spatial domain was divided into discrete patches
of unit length, ∆x = 1. Upon changing to dimensionless units n = n′K,
t = t′/r, x =

√
D/rx′, Eq. (12) becomes

∂

∂t′
n′(x, t) = n′(x, t) (1− n′(x, t)) +

∂2

∂x′2
n′(x, t) .

This equation is parameter free. In these units the spatial discretiza-
tion step ∆x′ in a numerical solution should satisfy ∆x′ ≪ 1 (in the
limit ∆x → 0 the discretized solution approaches the actual continu-
ous solution of Fisher’s equation). Using that ∆x′ =

√
r/D∆x, a step

length ∆x = 1 is a good choice if
√
r/D ≪ 1.

Side remark: in the problem set r = b− c = 1/2 and D = 1 was used,
which is really on the border of what is suitable. Actually, the observed
wave speed c ≈ 1.8 smaller than the theoretical minimal speed cmin = 2
in this solution is mainly due to this discretization error.

5. Coupled oscillators [2 points] Consider N coupled oscillators with
phases θ1, θ2, . . . θN and with the following time evolution

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (13)

a) When N = 2, show that the two oscillators approaches a phase-locked
dynamics. What is the relative phase between the oscillators?

Solution
Let θ− ≡ θ1 − θ2 and use Eq. (13) to get the dynamics

θ̇− = ω1 − ω2 −K sin θ− .

This dynamics has fixed points where θ∗−,1 = arcsin((ω1 − ω2)/K) and
θ∗−,2 = π − arcsin((ω1 − ω2)/K). By plotting the flow, one finds that
θ∗−,1 is a globally attracting stable fixed point.

Since the relative angle θ− is attracted to a single fixed point, the
oscillators approaches a phase locked dynamics with relative phase θ− =
arcsin((ω1 − ω2)/K).
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b) What is the angular velocity of the phase-locked dynamics you found
in subtask a)?

Solution
The angular velocity can be obtained by evaluating θ̇1 (or alternatively
θ̇2) using the phase-locked solution found in subtask a):

θ̇1 = ω1 −
K

2
sin θ−

= ω1 −
1

2
(ω1 − ω2)

=
1

2
(ω1 + ω2) .

Thus, the compromise frequency is the average frequency between the
two oscillators.

Alternative solution Since we know θ̇1 = θ̇2 we can use

ωc =
1

2
(θ̇1 + θ̇2) =

1

2
(ω1 + ω2) .

c) Introduce the order parameter

reiψ =
1

N

N∑
j=1

eiθj (14)

Show how to rewrite Eq. (13) on the following form

θ̇i = ωi +Kr sin(ψ − θi) .

Solution
Multiplication of Eq. (14) with e−iθi and evaluation of the imaginary
part gives

Im[rei(ψ−θi)] = Im

[
1

N

N∑
j=1

ei(θj−θi)

]

⇒r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) .

Inserting this relation into Eq. (13) gives the sought form:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

= ωi +Kr sin(ψ − θi) .
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d) Briefly explain what the order parameter quantifies and briefly explain
what the purpose is of introducing the order parameter in the Kuramoto
model.

Solution
The value of ψ measures the average phase of the oscillators and the
value of r measures the phase-coherence, it takes small values if the
phases of the oscillators are close to uniformly distributed, and it takes
values close to unity if the phases are closeby (synchronisation).

The introduction of the order parameter allows to rewrite Eq. (13) in
terms of a dynamics where all interactions between oscillators are en-
coded in r and ψ (as seen in subtask c). This allows for the application
of a mean-field theory in the limit of a large numbers of oscillators,
N → ∞, in which the order parameter can be replaced by an aver-
age quantity and the dynamics of individual oscillators decouples. The
mean-field theory allows for an analytical solution of the Kuramoto
model in the limit of large N . The value of the order parameter is
determined by the self-consistency condition that it is a constant when
evaluated from the solutions to the decoupled equations for θi.

6. Difference filters [2 points] This problem is not part of the course
material this year.
A linear filter denotes the procedure of convoluting a time series xn with a
discrete weight function an to form a filtered time series yn:

yn ≡
∞∑

m=−∞

amxn−m . (15)

a) A first-order difference filter has weights a0 = 1, a1 = −1 and all other
an = 0. Evaluate Eq. (15) using these weights.

Solution
The filter becomes yn = a0xn−0 + a1xn−1 = xn − xn−1.

b) A second-order difference filter is obtained by applying a first-order
difference filter two times on a time series. Write down the form of
Eq. (15) for a second-order filter and read off the non-zero weights an
of the second-order difference filter.

Solution
Apply the time series twice:

yn = (xn − xn−1)− (xn−1 − xn−2) = xn − 2xn−1 + xn−2 .

The non-zero weights are a0 = 1, a1 = −2, a2 = 1.

c) Show that the first-order difference filter removes linear trends in a time
series up to a constant, by applying it to a time series with a linear
trend: xn = An + ηn, where ηn denotes fluctuations around the linear
trend and A is a constant.
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Solution
Apply the first-order difference filter to the time series:

yn = xn − xn−1 = An+ ηn − (A(n− 1) + ηn−1) = A+ ηn − ηn−1 .

Thus, the filtered time series show fluctuations around a constant, the
linear trend has been removed.

d) Show that the second-order difference filter may be used to remove a
quadratic trend in a time series up to a constant.

Solution
Inspired from subtask c) we assume a time series with a quadratic trend
as xn = An2+ηn. Applying the second-order difference filter we obtain

yn = xn − 2xn−1 + xn−2

= An2 + ηn − 2(A(n− 1)2 + ηn−1) + A(n− 2)2 + ηn−2

= 2A+ ηn − 2ηn−1 + ηn−2 .

That is the quadratic trend is removed up to a constant.

e) Show that a p:th order difference filter, obtained by applying a first-
order difference filter p times, can be used to eliminate a time series
that is on the form of a general polynomial in n of degree p− 1.

Solution
Assume the time series is xn =

∑p−1
m=0Amn

m, where Am are general
coefficients of the polynomial. Applying a first-order difference filter
we obtain

yn =

p−1∑
m=0

Amn
m −

p−1∑
m=0

Am(n− 1)m

=

p−1∑
m=0

Amn
m −

p−1∑
m=0

Am

m∑
k=0

(
m

k

)
nm−k(−1)k

=

p−1∑
m=0

Amn
m −

p−1∑
m=0

Am

(
m

0

)
︸ ︷︷ ︸

1

nm −
p−1∑
m=0

Am

m∑
k=1

(
m

k

)
nm−k(−1)k

= −
p−1∑
m=0

Am

m∑
k=1

(
m

k

)
nm−k(−1)k .

Thus yn is a polynomial of degree p − 2, the degree is lowered by one
by applying the filter. For each successive application the degree of the
polynomial is reduced by one. After p − 1 applications of the filter,
the degree of the polynomial is zero, i.e. the filtered series is constant.
Finally, after the p:th application of the filter, the result becomes zero.
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