
Stochastic optimization methods (FFR 105), 2022
Solutions to the exam (2022-10-26)

1. 1.1 D. Only velocities should be restricted.

1.2 B. Both eigenvalues are positive, so the function is convex.

1.3 B. The probability equals p = (1− ptour)ptour.

1.4 D. The list of points found by applying the Lagrange multiplier method con-
tains all optima of f subject to the constraint, both local and global ones.

1.5 C. The stationary points are x = −1 and x = 2.

1.6 E. The probability equals p2 =
1
25

(
23
4
+ 61

4
+ 1

)
= 0.16.

1.7 A. Any number of genes (in the range [0,m]) can mutate, in principle, since
the mutation is applied on a gene-by-gene basis.

1.8 C. No general statement can be made regarding the symmetry of either matrix.

1.9 A. An individuals with fitness 0 will not be selected with RWS, in which selec-
tion is directly proportional to the fitness values. However, it can be selected
with TS, which only considers the fitness values (of the participants in the
tournament) relative to each other.

1.10 D. Since the pheromone levels are the same on all edges, the pheromone need
not be considered. With β = 1, the probability of selecting node 3 equals

p =
5

1 + 2 + 5
=

5

8
(1)

2. With f and h as specified in the problem formulation, L takes the form

L = x2 + y2 + z2 + λ(x4 + y4 + z4 − 1). (2)

so that, setting the partial derivatives of L to 0, one obtains

∂L

∂x
= 2x+ 4λx3 = 0, (3)

∂L

∂y
= 2y + 4λy3 = 0, (4)

∂L

∂z
= 2z + 4λz3 = 0, (5)

∂L

∂λ
= x4 + y4 + z4 − 1 = 0. (6)



It is clear that λ cannot be equal to 0, since that would give x = y = z = 0 which
violates the constraint. With λ ̸= 0 one gets the following potential solutions for x

x = 0 (7)

or

x2 = − 1

2λ
, (8)

and similar potential solutions for y and z. First, consider the case where two of
the variables, say x and y, take the value 0. In that case, one obtains (using the
constraint equation)

z = ±1. (9)

so that the following stationary points are found

P1,2 = (0, 0,±1). (10)

Using the fact that the problem is symmetric in the three variables, one also obtains

P3,4 = (±1, 0, 0) (11)

if y = z = 0, and
P5,6 = (0,±1, 0) (12)

if x = z = 0. Next, consider the case where one of the variables takes the value 0.
Starting, for example, with x = 0 and using the equations (see above)

y2 = − 1

2λ
(13)

and

z2 = − 1

2λ
, (14)

one gets y2 = z2 so that, y = ±z. Using the constraint equation one then finds

y = ±2−1/4, (15)

thus giving the following stationary points of L

P7,8,9,10 = (0,±2−1/4,±2−1/4). (16)

Using again the symmetry of the problem, one also finds additional stationary points
at

P11,12,13,14 = (±2−1/4, 0,±2−1/4) (17)



if y = 0 and
P15,16,17,18 = (±2−1/4,±2−1/4, 0) (18)

for z = 0. Finally, consider the case where none of the variables takes the value
zero. In that case

x2 = y2 = z2 = − 1

2λ
, (19)

so that the constraint gives 3x4 = 1, from which one obtains the following stationary
points of L

P19,20 = (±3−1/4,±3−1/4,±3−1/4). (20)

The values of the function f at these points are: f = 1 at P1, . . . , P6, f =
√
2 at

P7, . . . , P18, and f =
√
3 at P19,20. Thus, the minimum value of f is equal to 1,

and is attained as P1, . . . , P6, whereas the maximum value is
√
3, and is attained at

P19,20. Note: This problem can also be solved by substituting x2 = a, y2 = b and
z2 = c, and then solving for (a, b, c), while making sure to include both possibilities
(e.g. x = ±a) when finding the stationary points.

3. Given the specification in the problem formulation, the instructions (here denoted
Ij, j = 1, . . . 6) can be decoded as

I1 1216: r2 := r1 + c3
I2 3322: r3 := r2 × r2
I3 1214: r2 := r1 + c1
I4 1323: r3 := r2 + r3
I5 1115: r1 := r1 + c2
I6 1213: r2 := r1 + r3

Starting from r1 = x, r2 = r3 = 0, one then gets

r1 r2 r3
I1 x x− 1 0
I2 x x− 1 (x− 1)2

I3 x x+ 1 (x− 1)2

I4 x x+ 1 x+ 1 + (x− 1)2

I5 x+ 2 x+ 1 x+ 1 + (x− 1)2

I6 x+ 2 x+ 2 + x+ 1 + (x− 1)2 x+ 1 + (x− 1)2

Hence, the function obtained (from r2) at the end of the calculation is

g(x) = x+ 2 + x+ 1 + (x− 1)2 = 2x+ 3 + x2 − 2x+ 1 = x2 + 4. (21)



4. The minimum of the simple quadratic function f(x) is clearly at x = 3/16. Con-
sidering the decoding procedure specified in the problem, this corresponds to the
chromosome 00110 (which will then be decoded to give x = 2−3 + 2−4 = 3/16).
In order to generate this chromosome, an ant must traverse the construction graph
such that it first makes two down-moves (at Nodes 1 and 4), and two up-moves
(at Nodes 7 and 10), and then one down-move (at Node 13). Note that, at Nodes
2, 3, 5, 6, . . ., the move to the next node (i.e. 4, 7, . . .) is deterministic and does not
produce any output. Consider now the tour of one ant. Use a simplified notation,
such that p(eij|S) is denoted pi,j.

At Node 1, the ant can either go to Node 2 or to Node 3. Noting that the visibility
(ηij) is equal to 1 for all edges, the probability of making the required down-move
(i.e. going to Node 3, so as to generate a1 = 0) can be computed as

p3,1 =
τα31

τα31 + τα21
=

0.40

0.40 + 0.35
=

8

15
, (22)

where, in the second step, the fact that α = 1 has been used. The ant then moves
from Node 2 to Node 4, in preparation for the next bit generation step. At Node 4,
the probability of making a down-move (to output a2 = 0) equals

p6,4 =
0.30

0.30 + 0.60
=

1

3
. (23)

Next, after moving to Node 7, the ant should then move to Node 8 (to yield a3 = 1).
The probability for this move equals

p8,7 =
0.55

0.55 + 0.40
=

11

19
. (24)

Then, after reaching Node 10, the ant should move to Node 11 (to generate a4 = 1).
The probability for this move equals

p11,10 =
0.50

0.50 + 0.65
=

10

23
. (25)

After going to Node 13, the ant should then move to Node 15, to yield a5 = 0. This
probability for making this move is

p15,13 =
0.90

0.20 + 0.90
=

9

11
. (26)



Thus, the probability P of generating 001100 as output equals

P = p3,1 × p6,4 × p8,7 × p11,10 × p15,13 ≈ 0.036613. (27)

Now, the population consists of five ants that generate their paths independently
of each other, and with the same pheromone levels, as specified in the problem
formulation. For any given ant, the probability of not finding the required path is
equal to 1 − P . The probability that no ant finds this path thus equals (1 − P )5

and therefore the probability Π that at least one ant finds the path is

Π = 1− (1− P )5 = 0.1701, (28)

and this is the answer.

5. (a) Initially, the function values are 49/144 (particle 1), 1/16 (particle 2), and 1/4
(particle 3). Thus, the swarm best position is equal to the position of particle
2 (i.e. x = 0). With the simplifications, the velocity update takes the form

vi ← vi + 2(xpb
i − xi) + 2(xsb − xi), i = 1, 2, 3. (29)

One then obtains:

v1 = 3 + 2(0− (−1/3)) + 2(0− (−1/3)) = 11/3, (30)

v2 = 1/4 + 2(0− 0) + 2(0− 0) = 1/4, (31)

and
v3 = −1 + 2(3/4− 3/4) + 2(0− 3/4) = −5/2. (32)

All computed speed values have magnitudes below the limit (vmax = 4). Thus,
using the equation x← x+ v, the new positions become

x1 = −1/3 + 11/3 = 10/3, (33)

x2 = 0 + 1/4 = 1/4, (34)

x3 = 3/4− 5/2 = −7/4. (35)

(b) In the second iteration, the swarm best position is x = 1/4, i.e. the position of
particle 2 (which, of course, also is the particle best position for that particle).
The particle best position is unchanged for particle 1 and particle 3, since the



function values at their new positions exceed those obtained at their initial
positions. Using the same equations as above, one obtains

v1 = 11/3 + 2(−1/3− 10/3) + 2(1/4− 10/3) = −59/6. (36)

However, this value exceeds (in magnitude) the maximum (negative) speed of
-4, meaning that the actual speed of the particle will be v3 = −4 instead. For
particle 2 one gets

v2 = 1/4 + 2(1/4− 1/4) + 2(1/4− 1/4) = 1/4 (37)

and for particle 3

v3 = −5/2 + 2(3/4− (−7/4)) + 2(1/4− (−7/4)) = 13/2. (38)

This value is larger than the limit of 4, so that the actual speed will be v3 = 4
instead. Thus, finally, one obtains

x1 = 10/3− 4 = −2/3, (39)

x2 = 1/4 + 1/4 = 1/2, (40)

and
x3 = −7/4 + 4 = 9/4. (41)


