Stochastic optimization methods (FFR 105), 2020
Solutions to the exam (2020-10-28)

1. (a)

Newton-Raphson’s method takes the form
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A plot of the function can be seen in Fig. 1 below. One need only plot a few
points to realize that the stationary point must be in the interval [0, 2]. Starting
with xg = 1, the following sequence is obtained: x; = 1.5, x5, = 1.347826087,

x3 = 1.325200399, x4 = 1.324718174, x5 = 1.324717957. At this point, it can
be seen that the first 5 decimal places remain the same. Thus x* = 1.32472.
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Figure 1: Problem la

Here, the goal is to minimize the distance, but it is easier to work with the
squared distance (to avoid involving a square root). The squared distance d?
from any point (xy,z2,73)" to the point (4,0,0)T equals

d? = (v; — 4)? + 25 + 23. (3)
The constraint can be written

h(x1, 29, 23) = 25 + 25 — 25 — 1 =0, (4)



so that
L(xy, 09,13, \) = (21 — 4)* + az% + :Eﬁ + )\(:vf + x§ — :c§ —1). (5)

Taking the partial derivatives and setting them to zero, one obtains
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From Eq. (7) we see that this equation is solved (for any value of x5) if A = —1.
However, with A = —1, Eq. (6) gives —8 = 0, which is a contradiction, meaning

that A = —1 can safely be excluded.

Now, with A # —1, Eq. (7) leads to the requirement that x5 = 0. Consider
now Eq. (8). This equation is solved (for any value of x3) if A = 1. With A =1,
Eq. (6) gives 41 —8 = 0, so #; = 2. From the constraint, i.e. Eq. (9), one then
gets 224+ 0% — 22 = 1, so that 23 = ++/3. Thus, the two points P, = (2,0, v/3)"
and P, = (2,0, —/3)T are obtained.

If instead X\ # 1, Eq. (8) is solved only for 23 = 0. The constraint equation then
gives 22 + 02 + 02 = 1, so that x; = £1. Hence, the two points Ps = (1,0,0)*
and P, = (—1,0,0)T are obtained.

The distances d can now easily be computed, giving d(P) = d(P,) = /7,
d(Ps;) = 3 and d(P;) = 5. Thus, the minimum distance d,,;,, = v/7 is found for
P, and P.

Here, one can use the analytical method described in the course book, where
one first finds all stationary points in the interior of the set S, and then any
stationary points of the restriction of f to the boundary 0S.

Starting with the interior of S, the partial derivatives of f(xy,z5) are
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Since the exponential term cannot be zero in this bounded region, the two
partial derivatives only take the value 0 if 1 —2? = 0 and —2x, = 0, giving the
two points (1,0)T and (—1,0)T.



The next step is to investigate the boundary dS. In this case, the set S is a
square, so there are four edges. Starting with the edge x5 = =2, -2 < 7 < 2,
one finds

Fla, —2) = elr=37174) = g(zy). (12)

Taking the derivative of g(x;) and setting it to zero, one gets
g'(21) = (1= af)elm3t) o, (13)

with the solutions z; = 1 and x; = —1. Thus, from this part of the boundary,
the points (1, —2)T and (—1, —2)" are obtained as points of interest (for further
investigation later; see below). Similarly, for x5 = 2, one obtains the two points
(1,2)T and (—1,2)". For the edge 71 = —2, —2 < x5 < 2, the function takes
the form

F(=2,0) = e(3-73) = h(z,). (14)

Setting the derivative to zero one finds
h'(xq) = —2x,eli=3) = 0, (15)

with the solution xo = 0. Thus, the point (—2,0)T is obtained. In the same
way, for 71 = 2 one finds the point (2,0)*. Finally, one must also consider the
corners, i.e. the points (=2, —2)1, (=2,2)1,(2, —2)7, and (2,2)T. Thus, in total,
there are 12 candidates for the global extrema The functlon values at these
points are f(1,0) = e3, f(=1,0) = e"3, f(1,=2) = e~ %, f(—1 —2) e,
F-2.0) = b, f(2,0) = e f(12) = ¥, f(-1.2) = e ¥ f(-2,-2) =
e %, f(=2,2) = e T ,f(2,-2) = e 7, and £(2,2) = ¢=5. Thus, the points
(— 2,0) and (1,0)T are global maxima (where the function takes the value
e3). The points (—1,2)T, (=1, -2)7, (2 2)T and (2,—2)T are global minima

(where the function takes the value e~ ).

2. The best individual is individual 5, with fitness 30. Let F}; denote the fitness of
individual j, and let p; denote the probability of selecting that individual.

(a) For roulette-wheel selection the probability is obtained as
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(b) For tournament selection there are 5x 5 possible tournaments (since the tourna-
ment size is equal to 2), all equally likely. Nine of those tournaments involve in-
dividual 5, namely (1,5),(2,5),(3,5),(4,5),(5,5),(5,1),(5,2), (5,3), (5,4). For
the tournament (5,5), the probability of selecting individual 5 is equal to 1.
For all the other tournaments, the probability is equal to pio. since individual

5 is the better individual in each pair. Thus

1 1
ps = 5= (1+ 8prow) = 5=(1+8 x 0.75) = 0.280. (17)
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The main conclusion is that, with roulette-wheel selection, it is much more likely to
select individuals with high relative fitness than with tournament selection. This, in
turn, increases the risk of premature convergence if roulette-wheel selection is used
(without fitness ranking).

. The minimum of the simple quadratic function f(z) is clearly at x = 3/4. Con-
sidering the decoding procedure specified in the problem, this corresponds to the
chromosome 11000 (which will then be decoded to give x = 2714272 = 3/4). In or-
der to generate this chromosome, an ant must traverse the construction graph such
that it first makes two up-moves (at Nodes 1 and 4), and then three down-moves
(at Nodes 7, 10, and 15). Note that, at Nodes 2,3,5,6, ..., the move to the next
node (i.e. 4,7,...) is deterministic and does not produce any output. Consider now
the tour of one ant. Use a simplified notation, such that p(e;;|.S) is denoted p; ;.

At Node 1, the ant can either go to Node 2 or to Node 3. Noting that the visibility
(m:;) is equal to 1 for all edges, the probability of making the required up-move
(i.e. going to Node 2, so as to generate ag = 1) can be computed as
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where, in the second step, the fact that & = 1 has been used. The ant then moves
from Node 2 to Node 4, in preparation for the next bit generation step. At Node 4,
the probability of making an up-move (to output a; = 1) equals

0.60 4
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Next, after moving to Node 7, the ant should then move to Node 9 (to yield a; = 0).
The probability for this move equals

0.50 10
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Then, after reaching Node 10, the ant should move to Node 12,10 (to generate
az = 0). The probability for this move equals
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After going to Node 13, the ant should then move to Node 15, to yield a4 = 0. This
probability for making this move is

0.90 3
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Thus, the probability P of generating 11000 as output equals

P =pa1 X psa X po7 X pra,10 X p15,13 ~ 0.0403. (23)



Now, the population consists of five ants that generate their paths independently
of each other, and with the same pheromone levels, as specified in the problem
formulation. For any given ant, the probability of not finding the required path is
equal to 1 — P. The probability that no ant finds this path thus equals (1 — P)°
and therefore the probability II that at least one ant finds the path is

IM=1-(1-P)°=0.1861, (24)
and this is the answer.

. Let x; denote the position vector of particle 7, ¢ =A,B,C, with components x;;, j =
1,2. At initialization, for each particle, x*" = x;. Thus, X" = (0,1)T, x% = (1,1)7,
xgb = (1,0)*. The function values at these points are f4 = 2, fp = 3, and fo = 1.
Thus, since the objective is to minimize the function, x™ = x2 = (1,0)7.

(a) The velocities are computed using the equation

pb sb
Vjj £ W4 + c1q (JTtJ) + caor (]th> ) (25)

where ¢; = co =2, w =1, At =1, and ¢ = r = 0.5, so that

Vjj £ Vyj -+ <33£)]b — 331]) -+ (l‘;b — CEU) (26)
Moreover, in this initial step of the PSO algorithm xf}” = x;; so that only the
first and third term need to be considered. Thus, the new velocities for particle

A become
v =0+ (1—0)=1, (27)

Vs =—1+(0—1)=-2. (28)

However, due to the componentwise velocity restriction (given in the problem
formulation) v is set to -1. Continuing with particle B, one obtains

vpr=—-14+(1-1)= -1, (29)
v =0+ (0—1) = —1. (30)
Finally, for particle C,
ver=04+(1—-1)=0, (31)
vee =14+ (0—0)=1. (32)

(b) The positions are obtained as x;; ¢ x;; + v;;, since At = 1. Thus,
1‘A1:0+1:1, (33)

Tap=1-1=0, (34)



rpr=1—-1=0, (35)
Tpp=1—1=0, (36)
ro1=1+0=1, (37)
Too =0+1=1. (38)
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Figure 2: Problem 4c

(c) The new positions and velocities are plotted in the figure above. The function
values at the new points are f4 = 1, fg = 0, and fo = 3. Thus, comparing with
the original function values (see (a) above), one finds that, now, x% = (1,0)"
(i.e. its new position), x%’ = (0,0)" (also its new position), x% = (1,0)" (its
previous position). The swarm best (which is also the global minimum of the
function) is now at (0,0)7, i.e. the position of Particle B.



