
Stochastic optimization methods (FFR 105), 2016
Solutions to the exam (2016-10-26)

1. (a) In holdout validation one divides the data set into three subsets: A training
set, a validation set, and a test set. The training set is used for giving feedback
to the algorithm during training. At the same time, the performance over the
validation set is also measured (but not provided to the training algorithm).
Training continues until there is a significant drop in the validation perfor-
mance. At that point, the training is stopped, and the system with the best
validation performance is selected. Next, the performance over the previously
unused test set is measured, and can be taken as the true performance of the
system. A typical percentage division between training, validation, and test is
60-20-20.

(b) i. The two steps are called transcription and translation. In transcription,
the information in a gene (in the form of a sequence of bases, from the
alphabet A, C, G, and T) is read by RNA polymerase, resulting in an
mRNA molecule, containing the same information (albeit coded slightly
differently) as the gene. In translation, the mRNA molecule is used as
a template when forming a chain of amino acids (i.e. a protein). Each
codon, i.e. a sequence of three bases in the mRNA molecule, e.g. CAA,
encode a particular amino acid. Some codons encode the start and stop
command. Once the stop command has been reached the amino acid chain
is complete.

ii. The form of communication is referred to as stigmergy. This is a process of
indirect communication by means of local modification of the environment,
in which an ant deposits a volatile hydrocarbon (a pheromone) that other
ants can perceive. Ants tend to move in the direction of highest pheromone
scent. Note that the pheromones will evaporate after a while, unless the
path is replenished by additional ants.

(c) Description of PSO, see the course book, pp. 121-123. The tradeoff between
exploration and exploitation is handled by the inertia weight (w). If w takes a
value above 1, exploration is favoured since, in that case, the particle’s acceler-
ation is dominated by a component its current direction of motion. If instead
w < 1, exploitation is favoured. Typically w is initialized around 1.4, and is
then allowed to drop by a constant factor (0.99, say) in each iteration, until it
reaches around 0.3-0.4, after which point w is kept constant.



2. (a) Iterates are formed as
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Starting from x0 = 0.075, the following table is obtained

j xj

0 0.07500000
1 0.10500000
2 0.12180000
3 0.12491808
4 0.12499994
5 0.12499999

In the last step, the difference between the two successive iterates is less than
10−7. From the value obtained, it easy to guess that the true minimum x∗ is
at 0.125 = 1/8. One can easily check that indeed f ′(1/8) = 0. Moreover, since
f”(1/8) = 64 > 0, the optimum is a minimum.

(b) Rather than minimizing the distance, one can (equivalently) minimize the dis-
tance squared. Thus, function to minimize will be

f(x1, x2) = x2

1 + x2

2, (5)

with the constraint
h(x1, x2) = x2

1 + x1x2 − 1 = 0. (6)

Thus L takes the form

L(x1, x2, λ) = x2
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so that

∂L
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= 2x1 + λ(2x1 + x2) = 0,
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From the first two equations, one finds 2x1 = −λ(2x1 + x2) and 2x2 = −λx1,
so that

x1(4 + 4λ− λ2) = 0. (9)

The solution x1 = 0 does not satisfy the constraint. Thus, instead, one must
have 4 + 4λ− λ2 = 0, so that
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√
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Considering first λ1 = 2 + 2
√
2, using 2x2 = −λx1, one can then write (using

the constraint)
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so that
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If one instead tries with λ2, one obtains imaginary values, so those solutions
can be excluded. Thus, there are two possible solutions, namely
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Both points are equidistant from the origin.



Figure 1: Left panel: The trajectory for Problem 3(a). Right Panel: The trajectory for
Problem 3(b).

3. (a) The chromosome c1 = 11311241223211 can be decoded as
11 → Move forward one step
31 → Turn left, 90 degrees
12 → Move forward two steps
41 → Turn right 90 degrees
22 → Move backward, two steps
32 → Turn left 2× 90 = 180 degrees
11 → Move forward one step

(b) The crossover results in the two chromosomes c3 = 11113111 and c4 = 22311241223221.
When decoded, the shorter of the two new chromosomes results in the follow-
ing sequence of movements:
11 → Move forward one step
11 → Move forward one step
31 → Turn left, 90 degrees
11 → Move forward one step

The trajectories are shown in Fig. 1.

4. (a) The probabilities are obtained using Eq. (4.3) in the book. Since the pheromone
levels are equal on all edges, they will disappear from the equation. The re-
sulting probabilities are thus

p(I → II) =
3

3 + 2 + 2
=

3

7
, (15)



since the ant can move to any other node (II, III, or IV) from node 1. Contin-
uing, one finds in a similar way

p(II → III) =
3

4 + 3
=

3

7
, (16)

p(III → IV ) = 1, (17)

and
p(IV → I) = 1. (18)

Thus, the probability of obtaining the desired path is equal to 9/49 ≈ 0.18367.

(b) The pheromone levels will be

τij ← τij(1− ρ) + f = 1× 0.5 + 0.5 = 1, (19)

for those (note!) four edges that the ant traversed (listed above). For all other
edges (including the reverse edges, e.g. I → IV etc.), only evaporation will
occur, so that τij ← 0.5.


