
Stochastic optimization methods (FFR 105), 2015
Solutions to the exam (2015-10-28)

1. (a) Premature convergence occurs when the population converges to a suboptimal
solution. This can happen when, in the early generations, one or a few indi-
viduals have much higher fitness than the others, but still well below the best
possible fitness. In many cases, the fitness landscape may have very narrow
peaks, making it difficult to find those better solutions.

Through selection and crossover, the (relatively speaking) high-fitness individ-
uals quickly spread their genetic material in the population and, in some cases,
the population may then become stuck near the suboptimal solution, unless one
or a few individuals happen to stumble upon a path towards a better solution
before premature convergence has occurred.

Premature convergence can be prevented in many ways, for example using
varying mutation rates (such that the mutation rate is increased whenever the
diversity of the population becomes too low, and vice versa) or some form of
mating restriction (for example, by means of diffusion models, in which the
individuals are placed on an imaginry grid and where each individuals is only
allowed to mate with the nearest neighbours).

(b) The two steps are called transcription and translation. In transcription, the
information in a gene (in the form of a sequence of bases, from the alphabet
A, C, G, and T) is read by RNA polymerase, resulting in an mRNA molecule,
containing the same information (albeit coded slightly differently) as the gene.
In translation, the mRNA molecule is used as a template when forming a chain
of amino acids (i.e. a protein). Each codon, i.e. a sequence of three bases in
the mRNA molecule, e.g. CAA, encode a particular amino acid. Some codons
encode the start and stop command. Once the stop command has been reached
the amino acid chain is complete.

(c) The form of communication is referred to as stigmergy. This is a process of
indirect communication by means of local modification of the environment, in
which an ant deposits a volatile hydrocarbon (a pheromone) that other ants can
perceive. Ants tend to move in the direction of highest pheromone scent. Note
that the pheromones will evaporate after a while, unless the path is replenished
by additional ants.

(d) The pheromones are updated as follows: Let Dk denote the length of the tour
generated by ant k. The pheromone level on edge eij is then modified as

∆τ
[k]
ij =

1

Dk

, (1)

if ant k traversed the edge ej. If not, ∆τ
[k]
ij = 0. Once all ants have been

considered, the total change in the pheromone level on edge eij is computed as

∆τij =
N∑
k=1

∆τ
[k]
ij , (2)

where N is the number of ants. Finally, evaporation is applied, so that

τij ← (1− ρ)τij + ∆τij, (3)



where ρ is the evaporation rate (typically set to 0.5).

(e) The search direction is the negative gradient (−∇f). Here, the gradient takes
the form

∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)T

= (4x1 + 3x2, 3x1 + 2x2)
T , (4)

where T denotes the transpose of the vector. Thus,

−∇f(x1, x2)|x1=1,x2=1 = −(7, 5)T . (5)

In gradient descent, the next iterate xi+1 is given by

xi+1 = xi − η∇f(xi). (6)

At the point (1, 1)T , one then obtains

xi+1 = (1, 1)T − η(7, 5)T = (1− 7η, 1− 5η)T . (7)

At this point, the function thus becomes

φ(η) ≡ f(1− 7η, 1− 5η) = 2(1− 7η)2 + 3(1− 7η)(1− 5η) + (1− 5η)2 − 4

= 2− 28η + 98η2 + 3− 15η − 21η + 105η2 + 1− 10η + 25η2 − 4 =

228η2 − 74η + 2. (8)

2. (a) Proof: See Sect. B2.4 in the course book (pp. 181-182).

(b) i. With random initialization the initial probability distribution becomes

p1(j) = 2−m

(
m

j

)
. (9)

The average fitness of the initial population can be computed as
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m∑
j=0
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Starting from the binomial theorem, with a = x, b = 1, taking the deriva-
tive with respect to x, and then setting x = 1, one obtains

m∑
j=0

j
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j

)
= m2m−1. (11)

If, instead of setting x = 1, one instead multiplies by x, takes the derivative
again, and finally sets x = 1, one gets

m∑
j=0

j2
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j

)
= m(m+ 1)2m−2. (12)

Thus, inserting the expressions for these two sums, one finally obtains

F 1 = 2−mm2m−1 − 2−m

m
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4
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4
. (13)



ii. The probability distribution in the second generation is given by

p2(j) =
f(j)p1(j)∑m
j=0 f(j)p1(j)

=
f(j)p1(j)
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3. (a) The condition is that the gradient of f should be parallel to the gradient of
h, i.e. that ∇f + λ∇h = 0, where λ (the Lagrange multiplier) is a parame-
ter. This relation between the gradients can be understood by considering the
level curves of f : By drawing a figure showing those levels curves, as well as
the constraints, one can illustrate the fact that local optima occur where the
gradient of f is parallel to the gradient of h. At those points, any movement
along the constraint curve h = 0 will result in either an increase of f (at a
local minimum) or a decrease of f (at a local maximum). See also Fig. 2.8 in
the course book.

(b) In this case, the function L(x1, x2, λ) takes the form

L(x1, x2, λ) = f(x1, x2) + λh(x1, x2) = x21x2 + 2x2 + λ(x21 + x22 − 1). (15)

Setting the gradient of L to zero, one finds

∂L

∂x1
= 2x1x2 + 2λx1 = 0, (16)

∂L

∂x2
= x21 + 2 + 2λx2 = 0, (17)

∂L

∂λ
= x21 + x22 − 1 = 0. (18)

The first equation gives x1 = 0 or λ = −x2. With x1 = 0, the third equation
gives x2 = ±1. Thus, the two points (0, 1)T and (0,−1)T are obtained. If
instead λ = −x2, the second equation gives x21 = −2 + 2λ2. Inserting this into
the third equation, one gets

−2 + 2λ2 + λ2 − 1 = 0, (19)

so that 3λ2 = 3, i.e. λ = ±1. Thus x2 = −λ = ±1 and x21 = −2 + 2λ2 = 0.
This again gives the two points already considered above, namely (0, 1)T and
(0,−1)T . The function takes the value 2 at (0, 1)T and -2 at (0,−1)T . Thus,
the maximum value of 2 occurs at (0, 1)T , and the minimun value of −2 occurs
at (0,−1)T .

4. (a) The velocity update for particle i is given by

vij ← wvij + c1q

xpbij − xij
∆t

+ c2r

(
xsbj − xij

∆t

)
, j = 1, . . . , n, (20)

where w, the inertia weight, handles the tradeoff between exploration and
exploitation. If w > 1, exploration is favored. If instead w < 1, the particle
focuses on exploitation of the results already found. Normally, one starts with
a value of w of around 1.4, then reduces w by a factor β ≈ 0.99 until w reaches
a lower limit of around 0.3− 0.4, where it is then kept constant.



(b) i. Initially, the function values are 49/144 (particle 1), 1/16 (particle 2), and
1/4 (particle 3). Thus, the swarm best position is equal to the position of
particle 2 (i.e. x = 0). With the simplifications, the velocity update takes
the form

vi ← vi + (xpbi − xi) + (xsb − xi), i = 1, 2, 3. (21)

One then obtains:

v1 = 3 + 2(−1/3− (−1/3)) + 2(0− (−1/3)) = 11/3, (22)

v2 = 1/4 + 2(0− 0) + 2(1/3− 1/3) = 1/4, (23)

and
v3 = −1 + 2(3/4− 3/4) + 2(0− 3/4) = −5/2. (24)

Thus, using the equation x← x+ v, the new positions become

x1 = −1/3 + 11/3 = 10/3, (25)

x2 = 0 + 1/4 = 1/4, (26)

x3 = 3/4− 5/2 = −7/4. (27)

ii. In the second iteration, the swarm best position is x = 1/4, i.e. the position
of particle 2 (which, of course, also is the particle best position for that
particle). The particle best position is unchanged for particle 1 and particle
3, since the function values at their new positions exceeds those obtained
at their initial positions. Using the same equations as above, one obtains

v1 = 11/3 + 2(−1/3− 10/3) + 2(1/4− 10/3) = −59/6. (28)

However, this value exceeds (in magnitude) the maximum (negative) speed
of -4, meaning that the actual speed of the particle will be v3 = −4 instead.
For particle 2 one gets

v2 = 1/4 + 2(1/4− 1/4) + 2(1/4− 1/4) = 1/4 (29)

and for particle 3

v3 = −5/2 + 2(3/4− (−7/4)) + 2(1/4− (−7/4)) = 13/2. (30)

This value is larger than the limit of 4, so that the actual speed will be
v3 = 4 instead. Thus, finally, one obtains

x1 = 10/3− 4 = −2/3, (31)

x2 = 1/4 + 1/4 = 1/2, (32)

and
x3 = −7/4 + 4 = 9/4. (33)


