
Stochastic optimization methods (FFR 105), 2011
Solutions to the exam (20111017)

1. (a) Roulette-wheel selection and tournament selection, see pp. 48-50 in the course
book. For roulette-wheel selection, the quantities

φj =

∑j
i=1 Fi

∑N
i=1 Fi

(1)

are generated for j = 1, 2, . . . , N . Next a random number r ∈ [0, 1[ is drawn
and the selected individual is taken as the individual with the smallest j that
satisfies φj > r. For tournament selection (with tournament size 2), two in-
dividuals are picked randomly from the population. Next a random number
r ∈ [0, 1[ is generated. If r < ptour (typically around 0.7-0.8), the better of the
two individuals is chosen, if not, the worse individual is chosen. Tournament
selection can also be generalized to the case of tournaments with more than
two participants. In that case, the best individual (of the j randomly picked
individuals) is selected with probability ptour as just described. If this individ-
ual is not selected, it is removed from the tournament, a new random number r
is drawn, and the best of the remaining individuals is selected with probability
ptour etc. Note that both selection methods take place with replacement. That
is, a given individual can be selected several times.

(b) The standard PSO is given in Algorithm 5.1 in the book but with the inertia

term added, see Eq. (5.20) in the book. For full points, the description should
include the five steps of the algorithm (initialization, evaluation, best position
updates (particle best and swarm best), position and velocity updates, and the
return to step 2. The indices i (enumerating particles) and j (enumerating
dimensions) should be introduce correctly in all parts of the algorithm; for
example, the swarm best vector xsb

j should have only one index. Furthermore,
the velocity update equation should be clearly described (the cognitive and
social terms, with the two constants c1 and c2 and the random numbers q
and r). The velocity restriction should be defined. The trade-off between
exploration and exploitation is taken care of by the inertia term, which should
vary from around 1.4 down to 0.3-0.4.

(c) Making a Taylor expansion of f(x), one obtains

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 ≡ f[2](x). (2)

Taking the derivative and setting it to zero, one finds the stationary point.
Thus

f ′

[2](x) = 0 ⇔ f ′(x0) + (x− x0)f
′′(x0) = 0. (3)

Solving this equation, one obtains

x? = x0 −
f ′(x0)

f ′′(x0)
. (4)

Thus, the iteration rule takes the form

xj+1 = xj −
f ′(xj)

f ′′(xj)
. (5)



(d) The convexity of a function can be investigated by considering the properties
of the Hessian. For the function in question, the Hessian equals

H =





∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f
∂x2

2



 =

(

8 -5
-5 6

)

, (6)

with eigenvalues 7±
√

26 which are both larger than zero. Thus, the function
is convex.

2. (a) Decoding the chromosome, one obtains:

1214 ⇔ r2 := r1 + c1

3315 ⇔ r3 := r1 × c2

3123 ⇔ r1 := r2 × r3

3333 ⇔ r3 := r3 × r3

1323 ⇔ r3 := r2 + r3

4213 ⇔ r2 := r1/r3

With the initial values r1 = x, r2 = r3 = 0, and with c1 = 1, c2 = 2, and
c3 = −1, one obtains:

Step 1: r1 = x, r2 = x + 1, r3 = 0
Step 2: r1 = x, r2 = x + 1, r3 = 2x
Step 3: r1 = 2x(x + 1), r2 = x + 1, r3 = 2x
Step 4: r1 = 2x(x + 1), r2 = x + 1, r3 = 4x2

Step 5: r1 = 2x(x + 1), r2 = x + 1, r3 = 4x2 + x + 1
Step 6: r1 = 2x(x + 1), r2 = 2x(x + 1)/(4x2 + x + 1), r3 = 4x2 + x + 1

Thus, the answer is

f̂(x) =
2x2 + 2x

4x2 + x + 1
. (7)

(b) The only difference compared to the case considered above is that the first
instruction now takes the form

1211 ⇔ r2 := r1 + r1

With the same initial values as above, one obtains

Step 1: r1 = x, r2 = 2x, r3 = 0
Step 2: r1 = x, r2 = 2x, r3 = 2x
Step 3: r1 = 4x2, r2 = 2x, r3 = 2x
Step 4: r1 = 4x2, r2 = 2x, r3 = 4x2

Step 5: r1 = 4x2, r2 = 2x, r3 = 4x2 + 2x
Step 6: r1 = 4x2, r2 = 4x2/(4x2 + 2x), r3 = 4x2 + 2x

Thus, the answer is

f̂(x) =
4x2

4x2 + 2x
=

2x

2x + 1
(x 6= 0) (8)



3. (a) It is easy to see that the nearest-neighbour path starting from node 1 is 1 →
2 → 3 → 4 → 5 (with a return to node 1 as the final step). The equation for
determining the probability of a move from node j to node i takes the following
form

p(eij |S) =
τα
ijη

β
ij

∑

νl /∈LT (S) τα
ljη

β
lj

, (9)

where ηij = 1/dij. Since the pheromone levels are equal on all edges, the τij

terms cancel out, and one is left with the expression

p(eij |S) =
ηβ

ij
∑

νl /∈LT (S) ηβ
lj

(10)

In node 1, there are four possible moves, with distances d21 = 2, d31 =
√

10,
d41 =

√
13, and d51 =

√
5. With β = 2 the probability of moving to node 2

becomes

p(e21|S = {ν1}) =
1
4

1
4

+ 1
10

+ 1
13

+ 1
5

≈ 0.398773. (11)

In node 2, there are three possible moves, with distances d32 =
√

2, d42 =
√

5,
and d52 =

√
13. Thus

p(e32|S = {ν1, ν2}) =
1
2

1
2

+ 1
5

+ 1
13

≈ 0.643564. (12)

In node three, there are two possible moves, with distances d43 = 1 and d53 =√
17. Thus

p(e43|S = {ν1, ν2, ν3}) =
1

1 + 1
17

≈ 0.944444. (13)

The remaining steps, from node 4 to node 5 and then back to node 1, take place
with probability 1. Thus, the probability of following the nearest-neighbour
path, starting at node 1, becomes

p12345 = p21 × p32 × p43 ≈ 0.242. (14)

(b) The length of the nearest-neighbour path starting from node 1 equals

L12345 = 2 +
√

2 + 1 + 4 +
√

5 ≈ 10.65 (15)

length units. The initial pheromone level τij is thus equal to

τij =
1

ρDnn
≈ 0.1878. (16)

In MMAS, only the best ant is allowed to deposit pheromone. One can easily
see that the path of the fourth ant is the shortest (i.e. the best). Since this
path is the nearest-neighbour path considered above, we can write

∆τ
[b]
ij =

1

Dnn
(17)



Figure 1: The feasible region for Problem 4.

for the edges in that path, namely e21, e32, e43, e54 and e15. the pheromones
are updated as

τij ← τij(1− ρ) + ∆τ
[b]
ij =

1

ρDnn
(1− ρ) +

1

Dnn
=

1

ρDnn
. (18)

That is, the pheromone levels remain unchanged on these edges. For all other
edges, the pheromones change as

τij ← τij(1− ρ) =
1

ρDnn
(1− ρ) ≈ 0.0939. (19)

However, since MMAS introduces a lower pheromone limit, in this case 0.1,
the pheromone levels on those edges will be equal to 0.1 rather than 0.0939.

4. (a) The penalty term takes the form

p(x; µ) = µ

(

m
∑

i=1

(max{gi(x), 0})2 +
k
∑

i=1

(hi(x))2

)

, (20)

where gi(x) and hi(x) are the (m) inequality and (k) equality constraints,
respectively and µ is a positive parameter that determines the magnitude of
the penalty.

(b) Using the four constraints, one can plot the feasible region, see the figure above.
It is easy to see that the unconstrained minimum occurs at (x1, x2) = (6, 7).
Starting at this point, one can see that, in fact, only the third constraint is
violated here. Thus, at this point, one can write objective function as

fp(x; µ) = (x1 − 6)2 + (x2 − 7)2 + µ(x1 + x2 − 7)2. (21)



Setting the gradient to zero, one obtains

∂fp

∂x1
= 2x1 − 12 + 2µ(x1 + x2 − 7) = 0 (22)

and
∂fp

∂x2
= 2x2 − 14 + 2µ(x1 + x2 − 7) = 0. (23)

From these equations, one finds a single solution, namely

x1(µ) =
6(1 + µ)

1 + 2µ
, (24)

x2(µ) = 7− 6µ

1 + 2µ
. (25)

With µ→∞ one obtains (x1, x2) = (3, 4). Moreover, for any finite value of µ,
the point (x1(µ), x2(µ)) violates the third constraint (and only that constraint),
as can be seen by studying the constraints and the feasible region in the figure.
One can also see that fp(x; µ) is strictly convex for any µ > 0, so the point
(3,4) is the global minimum of f subject to the constraints.


