
ESS101 Modelling and simulation Teacher: Bo Egardt, tel 3721 (available online)
Online exam August 23, 2021 email bo.egardt@chalmers.se

This exam contains 11 pages (including this cover page) and 5 problems.

A brief summary of instructions (detailed instructions available at Canvas):

• You must be logged into Zoom during the entire exam, with video on and yourself clearly
visible against a neutral background. The microphone shall be muted, and the audio can
be switched off, unless you are asked to switch it on. It is prohibited to use any kind of
headphones or earphones, or to record the examination with your own equipment.

• You must be alone in the room where you conduct the exam (unless you have informed
us prior to the exam).

• Please check ”announcements” on the Canvas page now and then for messages from the
examiner.

• If you want to contact the proctor, write ”Contact” in the Zoom chat to ”everyone”. If
you have a question for the examiner, write ”Question for examiner”.

• If you need to go to the bathroom, write ”Bathroom” and ”Bathroom return”, respectively.
Keep bathroom breaks as brief as possible!

• It is not allowed to cooperate or receive help from another person, or to communicate
orally or in writing with anyone except the proctor and the examiner! If this is observed,
it will be reported.

Solutions and submissions:

• Solutions are written by hand on paper, exactly as in a regular exam hall. Label each
sheet of paper with your name, problem number and page number.

• At 12:30 at the latest, start scanning your solutions. Write ”scanning solutions” in the
chat. Compile your scanned solutions into one document, e.g. using Word, and save it as
one pdf file.

• Check that the file is readable and then submit it via the Assignment in Canvas before
13:00, which is a hard deadline! Write ”Submitted in Canvas” in the chat.

• When the proctor has checked you off the list and tagged your name with ##DONE##,
you may leave the Zoom meeting by selecting “Leave breakout room” and then “Leave
meeting”.

• If you experience any problems with the submission in Canvas, then send the file via email
to the examiner (bo.egardt@chalmers.se), before the deadline at 13:00.
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Guidelines:

• Organize your work in a reasonably neat and coher-
ent way. Work scattered all over the page without
a clear ordering may receive less credit.

• Mysterious or unsupported answers will not re-
ceive credit, but an incorrect answer supported by
substantially correct calculations and explanations
will receive partial credit.

• None of the proposed questions require extremely
long computations. If you get caught in endless
algebra, you have probably missed the simple way
of doing it.

• The nominal grade limits are 20 (3), 27 (4) and 34
(5).

Problem Points Score

1 8

2 9

3 10

4 8

5 5

Total: 40

GOOD LUCK !!
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1. (a) (2 points) Transform the system

(ÿ)3 + 3y = u

into state-space form.

(b) (2 points) The system

ẋ1 = −x1

ẋ2 = x1 − 800x2 + 400u

should be simulated with initial condition x(0) = [1 0]> when driven by a high-
frequency input u. Determine a simplified system, which approximates the original
system’s behaviour during an initial period of simulation.

(c) (2 points) Consider the following ARMA model:

y(t) + 0.7y(t− 1) = u(t− 1) + 0.5u(t− 2) + e(t) + 0.2e(t− 1)

Find the corresponding plant and noise model transfer functions G and H, and give
an explicit (with numeric coefficients) difference equation, showing how the one-step
ahead prediction of the output is computed from data.

(d) (2 points) The system

ẋ =

[
−1 0
0 −4

]
x

shall be simulated using Euler’s backward method xk+1 = xk + ∆t · f(xk+1). For what
values of ∆t > 0 is the method stable?

Solution:

(a) By choosing the state variables x1 = y and x2 = ẏ, the following model is obtained:

ẋ1 = x2

ẋ2 = (u− 3x1)
1
3

(b) The eigenvalues of the system are λ1 = −1 and λ2 = −800, indicating that the
system is stiff. Since we are interested in the fast dynamics, we can approximate
the slow state x1 with its initial value, i.e. x1 ≈ 1. The simplified (fast) dynamics
is then described by

ẋ2 = −800x2 + 400u+ 1

(c) The plant and noise model transfer functions are

G(q) =
B(q)

A(q)
=
q−1 + 0.5q−2

1 + 0.7q−1
H(q) =

C(q)

A(q)
=

1 + 0.2q−1

1 + 0.7q−1

and the one-step ahead prediction is calculated from

C(q)ŷ(t|t− 1) = B(q)u(t) +
(
C(q)−A(q)

)
y(t),

giving the explicit expression

ŷ(t|t− 1) = −0.2ŷ(t− 1|t− 2) + u(t− 1) + 0.5u(t− 2)− 0.5y(t− 1)
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(d) Applying Euler backward to the system gives the recursion[
1 + ∆t 0

0 1 + 4∆t

]
xk+1 = xk ⇒ xk+1 =

[ 1
1+∆t 0

0 1
1+4∆t

]
xk

which is stable for all ∆t > 0.
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2. Consider the mechanical system depicted below. A ball with (point-like) mass m has the
position (x1, x2), where x1 is the horizontal and x2 the vertical coordinate. The ball is
gliding without friction along a rail that is described by the relation x2 = h(x1). Further,
the ball is attached to one end of a spring, having the spring constant k. The other end of
the spring (A) is gliding without friction along a horizontal rail, so that the spring is always
vertical.
The forces acting on the ball are thus the spring force (assuming the neutral position of the
force corresponds to x2 = 0), gravity g, and the normal force from the rail.

m

A

k

x2 = h(x1)

(a) (2 points) Determine the Lagrange function for the system.

(b) (2 points) Derive a dynamic model of the system in DAE form, and verify that only 2
independent initial conditions can be specified for the model.

(c) (2 points) How can you check in a simulation that there is not a tendency of the ball
losing contact with the rail?

(d) (3 points) Derive a standard state-space (ODE) model of the system.
Hint: Use the constraint equation to make substitutions.

Solution:

(a) Using q = p = (x1, x2), the kinetic and potential energies of the system can be
written:

T =
1

2
m(ẋ2

1 + ẋ2
2), V = mgx2 +

1

2
kx2

2 (1)

With the constraint c(q) = x2 − h(x1) = 0, the Lagrange function then reads as:

L = T − V − zc =
1

2
m(ẋ2

1 + ẋ2
2)−mgx2 −

1

2
kx2

2 − z(x2 − h(x1)) (2)

(b) The dynamics are constructed using:

d

dt

∂L
∂q̇

>
= m

[
ẍ1

ẍ2

]
,

∂L
∂q

>
= −mg

[
0
1

]
− kx2

[
0
1

]
− z

[
−h′(x1)

1

]
(3)
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Adding the rail constraint, the model then follows from Euler-Lagrange’s equation:

m

[
ẍ1

ẍ2

]
+mg

[
0
1

]
+ z

[
−h′(x1)

1

]
+ kx2

[
0
1

]
= 0 (4a)

x2 − h(x1) = 0 (4b)

(The DAE model can be transformed into standard semi-explicit form, but that is
not required in the problem formulation.)
The two 2nd order differential equations need 4 initial conditions, namely
x1(0), x2(0), ẋ1(0), and ẋ2(0)), but the constraint and its time derivative restricts
these:

x2(0) = h(x1(0)) (5)

ẋ2(0) = h′(x1(0))ẋ1(0), (6)

implying that only two independent initial conditions can be given.

(c) Looking in the vertical (x2) direction, the rail can only exert a force upwards,
i.e. in the opposite direction compared to gravity. From (4a), this can be seen to
correspond to z < 1, which is the condition that need to hold during the entire
simulation.

(d) Differentiating the constraint equation gives

ẋ2 = h′(x1)ẋ1 (7a)

ẍ2 = h′′(x1)ẋ2
1 + h′(x1)ẍ1 (7b)

Combining this with the 2nd row of (4a), we can solve for z:

z = −mẍ2 −mg − kx2 = −m
(
h′′(x1)ẋ2

1 + h′(x1)ẍ1

)
−mg − kx2 (8)

Inserting this expression into the first row of (4a) now gives a differential equation
for x1:

m
(
1 + h′(x1)2

)
ẍ1 +mh′(x1)h′′(x1)ẋ2

1 + (mg + kx2)h′(x1) = 0. (9)

Using the state-variables x1 and v1 = ẋ1, the following state-space model is finally
obtained:

ẋ1 = v1 (10a)

v̇1 = − 1

1 + h′(x1)2

(
h′(x1)h′′(x1)v2

1 + (g +
k

m
x2)h′(x1)

)
(10b)

By adding an “output equation” for x2, the model completely describes the system:

x2 = h(x1). (11)
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3. Consider the electrical circuit depicted below, where two current sources I1(t) and I2(t) are
driving a combination of three inductors L1, L2, L3.

5. Consider the circuit in Fig. 3 where the two generators are current
generators.

Figure 3: Exercise 5

(a) Show that the bond graph has a causality conflict. [2p]
(b) Show that the system can be represented as a DAE. Compute

the index of the DAE. [5p]
(c) What happens if one current generator is replaced by a voltage

generator? Is the circuit still representable with a DAE of the
same index? [3p]

7

I1 I2

(a) (4 points) Determine a DAE for the circuit, using as variables the inductor currents
and voltages, and with I1, I2 as inputs.

(b) (4 points) What is the index of the DAE?

(c) (2 points) Would the index of the DAE be reduced by replacing the current source I1

with a voltage source U1?

Solution:

(a) Introducing the inductor voltages u1, u2, u3 and using Kirchhoff’s laws along with
the inductors’ constitutive relations gives the following DAE in terms of the vari-
ables i1, i2, i3, u2, u3:

L1
di1
dt

= u1 = u2 + u3

L2
di2
dt

= u2

L3
di3
dt

= u3

I1 = i1 + i2

i2 = i3 + I2

(b) Using x =
[
i1 i2 i3 u2 u3

]>
and I =

[
I1 I2

]>
, we can write the DAE as

L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 0 0
0 0 0 0 0

 ẋ+


0 0 0 −1 −1
0 0 0 −1 0
0 0 0 0 −1
1 1 0 0 0
0 1 −1 0 0

x =


0 0
0 0
0 0
1 0
0 1

 I
To determine the index, differentiate the algebraic equations to get

L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
1 1 0 0 0
0 1 −1 0 0

 ẋ+


0 0 0 −1 −1
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0

x =


0 0
0 0
0 0
1 0
0 1

 İ
Since the first matrix is still singular, we need to proceed. Combining the equations,
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we get the new DAE
L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 0 0
0 0 0 0 0

 ẋ+


0 0 0 −1 −1
0 0 0 −1 0
0 0 0 0 −1
0 0 0 1

L1
+ 1

L2

1
L1

0 0 0 1
L2

− 1
L3

x =


0 0
0 0
0 0
1 0
0 1

 İ

After once again differentiating the two algebraic equations, we get
L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 1

L1
+ 1

L2

1
L1

0 0 0 1
L2

− 1
L3

 ẋ+


0 0 0 −1 −1
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0

x =


0 0
0 0
0 0
1 0
0 1

 Ï .

It is easy to verify that the first matrix is now non-singular, i.e. the model is an
ODE. Hence, the index is 2.

(c) Keeping the variables from the previous case, the new model is obtained by replac-
ing the algebraic equation I1 = i1 + i2 with u2 + u3 = U2:

L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 0 0
0 0 0 0 0

 ẋ+


0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 1 1
0 1 −1 0 0

x =


1 0
0 0
0 0
1 0
0 1


[
U1

I2

]

Now, differentiating the algebraic equations results in a coefficient matrix for ẋ
looking as 

L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 1 1
0 1 −1 0 0


which is singular (as seen from its block diagonal structure with a singular 2x2
matrix in the lower right corner). Hence, the DAE model has at least index 2,
meaning that the index is not reduced by the change.
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4. We want to estimate the parameters θ = (b1, b2) of an FIR model with predictor

ŷ(t|t− 1) = b1u(t− 1) + b2u(t− 2),

by minimizing the sum of the prediction errors squared. It is assumed that data is generated
by the true system

y(t) = 0.5u(t− 1) + 0.3u(t− 2) + e(t),

where e(t) is white noise with variance σ2
e = 2.

(a) (4 points) Assume the input u(t) is a white noise sequence, uncorrelated with e(t) (i.e.
E[u(t)e(s)] = 0, ∀t, s) and with variance σ2

u = 3. Compute the asymptotic (when the
number of data N tends to infinity) estimate of θ as well as the asymptotic variance
of the estimates.

(b) (4 points) Consider the same problem as above, but with an input u, still uncorrelated
with e, having the covariance function

Ru(τ) =


1, τ = 0

1, |τ | = 1

0, |τ | > 1

Which estimates of θ are obtained asymptotically in this case?

Solution:

(a) Find an expression for V (θ) = Eε2(t, θ):

V (θ) = E
[
(y(t)− ŷ(t|t− 1))2

]
= E

[
((0.5− b1)u(t− 1) + (0.3− b2)u(t− 2) + e(t))2

]
= σ2

u

(
(0.5− b1)2 + (0.3− b2)2

)
+ σ2

e ,

since all other terms disappear, due to the assumptions that u(·) is white noise and
u(·) and e(·) are uncorrelated.
Clearly, the minimum of V (θ) corresponds to b1 = 0.5 and b2 = 0.3, which means
that the two parameters are correctly estimated asymptotically.

Since the estimates are consistent, we can approximately evaluate the covariance
of the estimates using the formula

E
[
(θ̂N − θ0)(θ̂N − θ0)>

]
≈ σ2

e

N
R−1,

with

R = E[ϕ(t)ϕ>(t)] = E
[
u(t− 1)
u(t− 2)

] [
u(t− 1)
u(t− 2)

]>
= σ2

u

[
1 0
0 1

]
,

giving

E
[
(θ̂N − θ0)(θ̂N − θ0)>

]
≈ 1

N
· σ

2
e

σ2
u

[
1 0
0 1

]
=

2

3N

[
1 0
0 1

]
(b) A similar computation as above, but now observing that u is not any longer white
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noise, gives

V (θ) = E
[
(y(t)− ŷ(t|t− 1))2

]
= E

[
((0.5− b1)u(t− 1) + (0.3− b2)u(t− 2) + e(t))2

]
=
(
Ru(0)(0.5− b1)2 + (0.3− b2)2

)
+ 2Ru(1)(0.5− b1)(0.3− b2) + σ2

e

= (0.5− b1)2 + (0.3− b2)2 + 2(0.5− b1)(0.3− b2) + 2

=
(
0.8− (b1 + b2)

)2
+ 2

It is seen that any b1, b2, satisfying b1 + b2 = 0.8 minimizes V (θ), meaning that the
parameters can not both be correctly estimated in this case; only the static gain
b1 + b2 is correctly estimated.
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5. (5 points) Consider a Runge-Kutta scheme for integration of an ODE ẋ = f(x,u), defined
by the following Butcher array:

0 0 0
1 1/2 1/2

1/2 1/2

(a) Is the RK scheme explicit or implicit? How many stages are there?

(b) Write the equations describing an update of the solution sequence {xk}.
(c) Determine the stability function.

(d) Is the scheme A-stable?

Solution:

(a) The RK scheme is implicit and has 2 stages.

(b) The RK equations are

K1 = f (xk,u(tk))

K2 = f
(
xk +

∆t

2
(K1 + K2),u(tk + ∆t)

)
xk+1 = xk +

∆t

2
(K1 + K2)

(c) Denoting the Butcher array as
c A

bT

the stability function is given by R(µ) = 1 + µbT (I − µA)−11, where µ = λ∆t and
1 is a column vector with all entries equal to 1. Thus:

R(µ) = 1 + µ
[
1/2 1/2

] [ 1 0
−µ/2 1− µ/2

]−1 [
1
1

]
=

1 + µ/2

1− µ/2

(d) For µ in the left half-plane, let µ = α+ iβ with α < 0, giving

|R(µ)|2 =
|1 + µ/2|2

|1− µ/2|2
=

(1 + α/2)2 + β2

(1− α/2)2 + β2
=

1 + α2/4 + β2 + α

1 + α2/4 + β2 − α
< 1.

Hence, |R(µ)| ≤ 1 for all µ in the left half-plane, i.e. the scheme is A-stable.

THE END


