
ESS101 Modelling and simulation Teacher: Bo Egardt, tel 3721 (available online)
Online exam October 28, 2020 email bo.egardt@chalmers.se

This exam contains 11 pages (including this cover page) and 6 problems.

A brief summary of instructions (detailed instructions available at Canvas):

• You must be logged into Zoom during the entire exam, with video on and yourself clearly
visible against a neutral background. The microphone shall be muted, and the audio can
be switched off, unless you are asked to switch it on. It is prohibited to use any kind of
headphones or earphones, or to record the examination with your own equipment.

• You must be alone in the room where you conduct the exam (unless you have informed
us prior to the exam).

• Please check ”announcements” on the Canvas page now and then for messages from the
examiner.

• If you want to contact the proctor, write ”Contact” in the Zoom chat to ”everyone”. If
you have a question for the examiner, write ”Question for examiner”.

• If you need to go to the bathroom, write ”Bathroom” and ”Bathroom return”, respectively.
Keep bathroom breaks as brief as possible!

• It is not allowed to cooperate or receive help from another person, or to communicate
orally or in writing with anyone except the proctor and the examiner! If this is observed,
it will be reported.

Solutions and submissions:

• Solutions are written by hand on paper, exactly as in a regular exam hall. Label each
sheet of paper with your name, problem number and page number.

• At 12:30 at the latest, start scanning your solutions. Write ”scanning solutions” in the
chat. Compile your scanned solutions into one document, e.g. using Word, and save it as
one pdf file.

• Check that the file is readable and then submit it via the Assignment in Canvas before
13:00, which is a hard deadline! Write ”Submitted in Canvas” in the chat.

• When the proctor has checked you off the list and tagged your name with ##DONE##,
you may leave the Zoom meeting by selecting “Leave breakout room” and then “Leave
meeting”.

• If you experience any problems with the submission in Canvas, then send the file via email
to the examiner (bo.egardt@chalmers.se), before the deadline at 13:00.
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Guidelines:

• Organize your work in a reasonably neat and coher-
ent way. Work scattered all over the page without
a clear ordering may receive less credit.

• Mysterious or unsupported answers will not re-
ceive credit, but an incorrect answer supported by
substantially correct calculations and explanations
will receive partial credit.

• None of the proposed questions require extremely
long computations. If you get caught in endless
algebra, you have probably missed the simple way
of doing it.

• The nominal grade limits are 20 (3), 27 (4) and 34
(5).

Problem Points Score

1 10

2 10

3 5

4 5

5 5

6 5

Total: 40

GOOD LUCK !!
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1. (a) (2 points) The system

ẋ1(t) = −350x1 + 70u(t)

ẋ2(t) = 10x1(t)− 3x2(t) + u(t)

y(t) = 5x1(t) + 4x2(t)

is affected by a slowly-varying input signal u(t). Propose a simpler first-order model
(i.e. with only one state) giving approximately the same output signal.

(b) (2 points) Assume that the step response of the system

ÿ1(t) + 4ẏ1(t) + 3y1(t) = u1(t)

has been simulated, and that we would now want to study the step response of another
system:

ÿ2(t) + 8ẏ2(t) + 12y2(t) = u2(t).

Is it possible to use the results from the first simulation by means of scaling?

(c) (2 points) Given the true system

y(t) =
N(q)

D(q)
u(t) + e(t),

where N(q) and D(q) are polynomials and {e(t)} is a sequence of i.i.d. random vari-
ables, which black-box model structures give an unbiased estimator?

(d) (3 points) Give a state-space model for the simple mechanical system depicted below.
Give an electrical circuit that has the same state-space model, and briefly list the
correspondences between the variables and parameters in the two systems.

1. (a) Compute the equilibrium points of the system
ẋ1 = 2x1 − x1x2

ẋ2 = 2x2
1 − x2

[2p]
(b) Given the true system

y(t) = N(q)
D(q)u(t) + e(t)

where N(q) and D(q) are polynomials and e(t) is a white noise,
which classes of black-box models can give an unbiased predictor?

[2p]
(c) The system

ÿ + 2ẏ + 5y = −u̇+ u

has the step response shown in Fig. 1. Compute the step response
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Figure 1:

of the following system

4ÿ + 4ẏ + 5y = −6u̇+ 3u

without doing any simulation. Motivate your answer. [3p]
(d) Compute an electrical circuit that has the same bond graph as

the following mechanical system.

Show also the bond graph and briefly list the corrrespondences
between mechanical and electrical elements in it. [3p]

3

(e) (1 point) The optimization problem

min
x

Φ(x,y)

is often approached by solving the equation

∇xΦ(x,y) = 0.

When is this approach guaranteed to work?

Solution:

(a) The system is given here again:

ẋ1(t) = −350x1 + 70u(t) (1a)

ẋ2(t) = 10x1(t)− 3x2(t) + u(t) (1b)

y(t) = 5x1(t) + 4x2(t) (1c)

It can be noticed that the dynamics of (1a) is much faster than (1b), so the
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differential equation can be approximated by the static equation

0 = −5x1 + u(t),

which after insertion in (1b) gives the simpler system

ẋ2(t) = −3x2(t) + 3u(t)

y(t) = 4x2(t) + u(t)

(b) Let z(t) = αy1(βt) = αy1(τ). Then

dz(t)

dt
= α

dy1(τ)

dτ

dτ

dt
= αβ

dy1(τ)

dτ
d2z(t)

dt2
=

d

dτ

(
αβ

dy1(τ)

dτ

)
dτ

dt
= αβ2

d2y1(τ)

dτ2
,

giving

d2z(t)

dt2
+ 8

dz(t)

dt
+ 12z(t) = αβ2

d2y1(τ)

dτ2
+ 8αβ

dy1(τ)

dτ
+ 12αy1(τ).

It is seen that with the choice α = 1/4, β = 2, the expression above equals u1(τ),
which implies that the solution z(t) = y2(t) can be obtained from the solution y1
as y2(t) = y1(2t)/4, if the input is chosen as u1(τ) = u2(t) = u2(τ/2). In this case,
time scaling of the input is not needed (since it is a step).

(c) The system is on Output Error form, so an OE model will be fine. Also an ARMAX
model will work, since with A(q) = C(q), there will be a cancellation and the noise
model becomes similar to the one in the OE case. (In addition, the full Box-Jenkins
model will work, but this has not been explicitly mentioned in the course.)

(d) With position x and velocity v, we get the model[
ẋ
v̇

]
=

[
0 1

−k/m −b/m

] [
x
v

]
+

[
0

1/m

]
F

An electrical circuit with R, L, and C in series, driven by a voltage source V gives a
similar state-space model with capacitor charge Q and current i as state variables:[

Q̇

i̇

]
=

[
0 1

−1/LC −R/L

] [
Q
i

]
+

[
0

1/L

]
V

with the correspondences F ↔ V , x↔ Q, v ↔ i, L↔ m, 1/k ↔ C, b↔ R.

(e) The approach is guaranteed to work, when the necessary condition for a minimum
is also sufficient, i.e. when the problem is convex: ∇2

xΦ(x,y) is positive definite.
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2. Consider a 3D “roller-coaster” created by a mass m sliding on a surface described by the
(scalar-valued) constraint equation c(p) = 0, where p ∈ R3 is the usual cartesian coordinate
vector. The mass is affected by gravity and subject to a friction force given by F = −mγṗ.

(a) (2 points) Determine the Lagrange function for the system.

(b) (2 points) Derive a dynamic model of the system in semi-explicit DAE form. How
many differential and algebraic variables does the model have?

(c) (3 points) Perform an index-reduction to get an index-1 DAE in the fully implicit form.

(d) (1 point) Show how to modify the DAE you derived in (c) to avoid drift away from
the constraint surface in simulations.

(e) (2 points) Show that the DAE you derived in (c) is well-defined (“easy to solve”),
except for a case of no interest.

Solution:

(a) The kinetic and potential energies of the system can be written as (q = p):

T =
1

2
mṗ>ṗ, V = mge>p (2)

where e> =
[

0 0 1
]
. The Lagrange function then reads as:

L = T − V − zc =
1

2
mṗ>ṗ−mge>p− zc (p) (3)

(b) The dynamics are constructed using:

d

dt

∂L
∂q̇

>
= mp̈,

∂L
∂q

>
= −mge− z ∂c

∂p

>
(4)

Since we work in cartesian coordinates, the generalized force attached to the friction
is simply Q = F. The model then follows from Euler-Lagrange’s equation:

mp̈ +mge + z
∂c

∂p

>
= −mγṗ (5a)

0 = c(p) (5b)

In order to get a standard semi-explicit form, define the states x =

[
p
v

]
=

[
p
ṗ

]
to get

ṗ = v (6a)

v̇ = −γv − ge− z

m

∂c

∂p

>
(6b)

0 = c(p) (6c)

The model has 6 differential variables (p,v ∈ R3) and 1 algebraic variable (z).

(c) Since we have a semi-explicit DAE, the index reduction requires time-differentiation
of the algebraic constraint alone. We have:

ċ =
∂c

∂p
ṗ =

∂c

∂p
v = 0 (7)
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Since ∂ċ
∂z = 0, this equation does not deliver z yet. We therefore perform a second

time-differentiation:

c̈ =
∂

∂p

(
∂c

∂p
v

)
v +

∂c

∂p
v̇ = v>

∂2c

∂p2
v +

∂c

∂p
v̇ = 0 (8)

We can then assemble the DAE:

ṗ = v (9a)

mv̇ +
∂c

∂p

>
z = −mγv −mge (9b)

∂c

∂p
v̇ = −v> ∂

2c

∂p2
v (9c)

or equivalently:  I3 0 0

0 mI3
∂c
∂p

>

0 ∂c
∂p 0


︸ ︷︷ ︸

:=M(p)

 ṗ
v̇
z

 =

 v
−mγv −mge
−v> ∂2c

∂p2v

 (10a)

(d) Drift is avoided by replacing the constraint c̈ = 0 with c̈ + α1ċ + α2c = 0, with
α1, α2 > 0. Hence: I3 0 0

0 mI3
∂c
∂p

>

0 ∂c
∂p 0


 ṗ

v̇
z

 =

 v
−mγv −mge

−v> ∂2c
∂p2v − α1

∂c
∂pv − α2c(p)

 (11a)

(e) The implicit DAE is well-defined if the matrix M(p) is non-singular (implying that
ṗ, v̇, and z can be solved for, given p,v). To prove that M(p) is non-singular,
elementary row or column operations can be performed without changing the de-
terminant. The latter gives for example

detM(p) = det

M(p) ·

 I3 0 0

0 I3 − 1
m
∂c
∂p

>

0 0 1


 = det

 I3 0 0
0 mI3 0

0 ∂c
∂p − 1

m
∂c
∂p

∂c
∂p

>


= − ∂c

∂p

∂c

∂p

>
= −‖ ∂c

∂p
‖2, (12)

showing that M(p) is non-singular, as long as ‖ ∂c∂p‖2 is non-zero, which is true
unless c is independent of q (meaning that it is actually not a constraint).

3. Consider the mechanical system depicted below. The ball A with mass m has the position
(x1, x2), where x1 is the horizontal and x2 the vertical coordinate. The ball is gliding
without friction along a rail that is described by the relation x2 = h(x1). Further, the
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ball A is attached to one end of a spring, having the spring constant k. The other end of
the spring (B) is gliding without friction along a vertical rail, so that the spring is always
horizontal.
The forces acting on A are thus the spring force (assuming the neutral position of the force
corresponds to x1 = 0), gravity g, and the normal force N = (N1, N2) from the rail.

Uppgift 5 (10 p)

Betrakta nedanstående mekaniska system där enhetsmassan A, med horisontell
koordinat x1 och vertikal koordinat x2, glider friktionslöst längs en bana som
beskrivs av sambandet x2 = h(x1). I massan A är en fjäder med fjäderkonstanten
k fäst. Dess andra ände, B, glider friktionslöst på en vertikal linje på så sätt att
fjädern alltid är horisontell.

PSfrag replacements

A
B

x2 = h(x1)

g

k
N

Massan A påverkas också av gravitationskraften g och normalkraften N = (N1, N2)
T .

Hastigheten hos A har komponenterna v1 och v2 i horisontell respektive vertikal
riktning.

1. Utnyttja ekvationen x2 = h(x1) för att ställa upp ett samband mellan N1

och N2. (1p)

2. Ställ upp en DAE i variablerna x1, x2, v1, v2, N1 och N2. Vilket index får
den? (3p)

3. Ställ upp en bindningsgraf med en modulerad transformator som beskriver
systemet. Markera eventuella kausalitetskonflikter. (3p)

Ledning: Ekvationen för den modulerade transformatorn fås genom att man
deriverar x2 = h(x1) och på så sätt får ett samband mellan hastigheterna.

4. Förenkla bindningsgrafen tills en graf utan kausalitetskonflikter fås. Betrak-
ta för enkelhets skull fallet att x2 = h(x1) är en rät linje. Använd den
förenklade grafen för att ställa upp en tillståndsmodell. (Grafen används
alltså i detta fall till indexreduktion.) (3p)

Tips: Visa att nedanstående gäller och räkna ut vad β blir uttryckt i n och α.

PSfrag replacements

TF
n

I : α I : β⇔

5

(a) (1 point) Use the relation x2 = h(x1) to find a relation between N1 and N2.

(b) (1 point) Apply Newton’s second law of motion to find a DAE in the variables x1, x2,
v1, v2, N1, N2, describing the motion of A. Here v1, v2 are the horizontal and vertical
velocities, respectively.

(c) (3 points) What is the index of this DAE?

Solution:

(a) N is orthogonal to the rail, implying

(N1, N2) ⊥ (1,
dx2
dx1

) = (1, h′(x1)) ⇒ N1 = −N2h
′(x1)

(b) The DAE becomes

ẋ1 = v1 (13a)

ẋ2 = v2 (13b)

mv̇1 = N1 − kx1 (13c)

mv̇2 = N2 −mg (13d)

x2 = h(x1) (13e)

N1 = −N2h
′(x1) (13f)

(c) To investigate the index, a first differentiation of the algebraic equations gives

ẋ2 = h′(x1)ẋ1 ⇔ v2 = h′(x1)v1 (14a)

Ṅ1 = −h′(x1)Ṅ2 −N2h
′′(x1)ẋ1 = −h′(x1)Ṅ2 −N2h

′′(x1)v1, (14b)

delivering one more differential equation. The remaining algebraic equation is
differentiated once more, giving

v̇2 = h′(x1)v̇1 + h′′(x1)ẋ1v1 = h′(x1)v̇1 + h′′(x1)v
2
1, (15)

which, using (13c),(13d), again leads to an algebraic equation:

N2 −mg = h′(x1)(N1 − kx1) +mh′′(x1)v
2
1. (16)
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A third differentiation now gives

Ṅ2 = h′(x1)(Ṅ1 − kv1) + h′′(x1)v1(N1 − kx1) + 2mh′′(x1)v1v̇1 +mv21h
′′′(x1)v1

= h′(x1)(Ṅ1−kv1)+h′′(x1)v1(N1−kx1)+2h′′(x1)v1(N1−kx1)+mv21h
′′′(x1)v1,

(17)

thus finally giving an ODE by combining the original 4 differential equations with
(14b) and (17). Hence, the original DAE has index 3.
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4. (5 points) Consider the model structure

y(t) + αy(t− 1) = u(t− 1) + e(t) + γe(t− 1),

where e(·) is a sequence of i.i.d. random variables with zero mean, and the coefficient for u
is known to be 1.

(a) Compute the one-step ahead predictor ŷ(t|t− 1).

(b) What condition(s) need to be fulfilled for this predictor to be useful in practice?

(c) We want to fit the above model to data by minimizing the quadratic criterion

VN (θ) =
1

N

N∑
t=1

(y(t)− ŷ(t|t− 1))2

with θT =
[
α γ

]
. How can the minimizing θ be found? Answer brief and concise!

Solution: Using the backward shift operator q−1 (alternatively, z−1 can be used), the
model can equivalently be written as

(1 + αq−1)y(t) = q−1u(t) + (1 + γq−1)e(t). (18)

(a) The derivation is given for the general case in the Lecture notes, but in this par-
ticular case it can be done simpler. Rewrite the model as

(1 + γq−1)y(t) = (γ − α)q−1y(t) + q−1u(t) + (1 + γq−1)e(t), (19)

or, equivalently,

y(t) =
1

1 + γq−1
[
(γ − α)q−1y(t) + q−1u(t)

]
+ e(t) = ŷ(t|t− 1) + e(t), (20)

where the latter equality follows from the fact that e(t) is the only part of y(t) that
cannot be predicted. Hence, the predictor is given by the difference equation

(1 + γq−1)ŷ(t|t− 1) = (γ − α)y(t− 1) + u(t− 1) (21)

(b) The predictor is a dynamic system with inputs u and y and needs to be stable to
produce useful results. For this, we need to secure that |γ| < 1.

(c) Since ŷ depends nonlinearly on θ, the minimization is approached by iteratively
searching for a solution to the equation

∇θVN (θ) = 0

5. (5 points) We want to estimate the parameters θ = (b1, b2) of an FIR model with predictor

ŷ(t|t− 1) = b1u(t− 1) + b2u(t− 2).
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Assume the data is generated by the “true” system

y(t) = u(t− 1) + 0.7u(t− 2) + e(t),

where both the input u(t) and the noise e(t) have zero mean and are assumed to be uncor-
related (i.e E[u(t)e(s)] = 0, ∀t, s). Their covariance functions are given by

Ru(τ) =
1

2|τ |
, Re(τ) =

1

3|τ |
, ∀τ.

Compute the asymptotic (when the number of data tends to infinity) estimate of θ.
Hint: recall that the parameters converge to the minimum of the function E[ε2(t, θ)].

Solution: Find an expression for V (θ) = Eε2(t, θ):

V (θ) = E
[
(y(t)− ŷ(t|t− 1))2

]
= E

[
((1− b1)u(t− 1) + (0.7− b2)u(t− 2) + e(t))2

]
= (1− b1)2Ru(0) + (0.7− b2)2Ru(0) + 2(1− b1)(0.7− b2)Ru(1) +Re(0)

(all other terms disappear, since u(·) and e(·) are uncorrelated)

= (1− b1)2 + (0.7− b2)2 + (1− b1)(0.7− b2) + 1

To find the minimum, we evaluate the gradient:

∇V (θ) =

[
−2(1− b1)− (0.7− b2)
−2(0.7− b2)− (1− b1)

]
=

[
2b1 + b2 − 2.7
b1 + 2b2 − 2.4

]
= 0,

which gives the solution b1 = 1, b2 = 0.7, showing that the estimates are consistent,
even though the noise is not white; this is due to the fact that the input and the noise
are uncorrelated. Remark: it can easily be verified that the computed extremum point
is really a minimum.
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6. (5 points) Consider the following Runge-Kutta equations for integration of an ODE ẋ =
f(x,u):

K1 = f (xk,u(tk))

K2 = f
(
xk +

∆t

2
(K1 + K2),u(tk + ∆t)

)
xk+1 = xk +

∆t

2
(K1 + K2)

(a) Determine, if possible, the number of stages and the order of the scheme, and whether
it is an explicit or implicit RK scheme.

(b) What is the Butcher array describing the scheme?

(c) Determine the stability function.

(d) Is the scheme A-stable?

Solution:

(a) The RK scheme is implicit and has 2 stages, but the order cannot be determined
in a straightforward way.

(b) The Butcher array is given by

0 0 0
1 1/2 1/2

1/2 1/2

(c) Denoting the Butcher array as
c A

bT

the stability function is given by R(µ) = 1 + µbT (I − µA)−11, where µ = λ∆t and
1 is a column vector with all entries equal to 1. Thus:

R(µ) = 1 + µ
[
1/2 1/2

] [ 1 0
−µ/2 1− µ/2

]−1 [
1
1

]
=

1 + µ/2

1− µ/2

(d) Since |1 + µ/2| ≤ |1− µ/2| for all µ in the left half-plane, |R(µ)| ≤ 1 for the same
µ, i.e. the scheme is A-stable.

THE END


