ESS101 Modelling and simulation Teacher: Bo Egardt, tel 3721 (available online)
Online exam October 28, 2020 email bo.egardt@chalmers.se

This exam contains 11 pages (including this cover page) and 6 problems.

A brief summary of instructions (detailed instructions available at Canvas):

You must be logged into Zoom during the entire exam, with video on and yourself clearly
visible against a neutral background. The microphone shall be muted, and the audio can
be switched off, unless you are asked to switch it on. It is prohibited to use any kind of
headphones or earphones, or to record the examination with your own equipment.

You must be alone in the room where you conduct the exam (unless you have informed
us prior to the exam).

Please check ”announcements” on the Canvas page now and then for messages from the
examiner.

If you want to contact the proctor, write ” Contact” in the Zoom chat to ”everyone”. If
you have a question for the examiner, write ” Question for examiner”.

If you need to go to the bathroom, write ” Bathroom” and ” Bathroom return”, respectively.
Keep bathroom breaks as brief as possible!

It is not allowed to cooperate or receive help from another person, or to communicate
orally or in writing with anyone except the proctor and the examiner! If this is observed,
it will be reported.

Solutions and submissions:

Solutions are written by hand on paper, exactly as in a regular exam hall. Label each
sheet of paper with your name, problem number and page number.

At 12:30 at the latest, start scanning your solutions. Write ”scanning solutions” in the
chat. Compile your scanned solutions into one document, e.g. using Word, and save it as
one pdf file.

Check that the file is readable and then submit it via the Assignment in Canvas before
13:00, which is a hard deadline! Write ”Submitted in Canvas” in the chat.

When the proctor has checked you off the list and tagged your name with ##DONE##,
you may leave the Zoom meeting by selecting “Leave breakout room” and then “Leave
meeting”.

If you experience any problems with the submission in Canvas, then send the file via email
to the examiner (bo.egardt@chalmers.se), before the deadline at 13:00.
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Guidelines:

e Organize your work in a reasonably neat and coher- .
ent way. Work scattered all over the page without Problem | Points | Score
a clear ordering may receive less credit. 1 10

e Mysterious or unsupported answers will not re-
ceive credit, but an incorrect answer supported by 2 10
substantially correct calculations and explanations
will receive partial credit. 3 )

e None of the proposed questions require extremely 4 5
long computations. If you get caught in endless
algebra, you have probably missed the simple way 5 5
of doing it.

e The nominal grade limits are 20 (3), 27 (4) and 34 6 5
().

Total: 40

GOOD LUCK !
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1. (a) (2 points) The system

%1(t) = —350x1 + 70u(t)
Za(t) = 10x1(t) — 3xa(t) + u(t)
y(t) = b1 (t) + 4xa(t)
is affected by a slowly-varying input signal u(t). Propose a simpler first-order model
(i.e. with only one state) giving approximately the same output signal.

(b) (2 points) Assume that the step response of the system
g1(t) + 491(t) + 3y1(t) = wa(t)

has been simulated, and that we would now want to study the step response of another
system:

§2(t) + 8ija(t) 4+ 12y2(t) = ua(t).
Is it possible to use the results from the first simulation by means of scaling?

(c) (2 points) Given the true system

N(q)
D(q)

where N(q) and D(q) are polynomials and {e(¢)} is a sequence of i.i.d. random vari-
ables, which black-box model structures give an unbiased estimator?

y(t) = u(t) +e(t),

(d) (3 points) Give a state-space model for the simple mechanical system depicted below.
Give an electrical circuit that has the same state-space model, and briefly list the
correspondences between the variables and parameters in the two systems.

k

T
N

(e) (1 point) The optimization problem
min (x, y)
is often approached by solving the equation
Vx®(x,y) = 0.

When is this approach guaranteed to work?

Solution:

(a) The system is given here again:

#1(t) = —350x1 + T0u(t) (1a)
To(t) = 1021 (t) — 3wa(t) + u(t) (1b)
y(t) = 51 (t) + daa(t) (1c)

It can be noticed that the dynamics of (la) is much faster than (1b), so the
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differential equation can be approximated by the static equation
0= —bx1 + u(t),
which after insertion in (1b) gives the simpler system

Zo(t) = —3x2(t) + 3u(t)
y(t) = dxo(t) + u(t)

Let z(t) = ayi(Bt) = ayi(7). Then

dz(t)_ dy (7) dr dy, ()
i o @ U
Pot)  d ( dp()\dr o du()
at _dr<o‘5 i )ar =Y e
giving
d22(t) _da(t) 2 P91 (1) dy: (1)
e +8 p +122(t) = af 72 + 8a I + 12ay, (7).

It is seen that with the choice a = 1/4, 8 = 2, the expression above equals u;(7),
which implies that the solution z(¢) = y2(t) can be obtained from the solution
as y2(t) = y1(2t)/4, if the input is chosen as u1(7) = ua(t) = uz(7/2). In this case,
time scaling of the input is not needed (since it is a step).

The system is on Output Error form, so an OE model will be fine. Also an ARMAX
model will work, since with A(¢q) = C(q), there will be a cancellation and the noise
model becomes similar to the one in the OE case. (In addition, the full Box-Jenkins
model will work, but this has not been explicitly mentioned in the course.)

With position x and velocity v, we get the model

MR M

An electrical circuit with R, L, and C in series, driven by a voltage source V gives a
similar state-space model with capacitor charge ) and current i as state variables:

[?]:[—1?LC —;/LH?]+[1?L]V

with the correspondences F' <>V, x < Q, v <> i, L <> m, 1/k < C, b+ R.

The approach is guaranteed to work, when the necessary condition for a minimum
is also sufficient, i.e. when the problem is convex: V2®(x,y) is positive definite.




ESS101 Modelling and simulation Page 5 of 11

2. Consider a 3D “roller-coaster” created by a mass m sliding on a surface described by the
(scalar-valued) constraint equation ¢(p) = 0, where p € R? is the usual cartesian coordinate
vector. The mass is affected by gravity and subject to a friction force given by F = —m~yp.

(a) (2 points) Determine the Lagrange function for the system.

(b) (2 points) Derive a dynamic model of the system in semi-explicit DAE form. How
many differential and algebraic variables does the model have?

(c) (3 points) Perform an index-reduction to get an index-1 DAE in the fully implicit form.
(d) (1 point) Show how to modify the DAE you derived in (c) to avoid drift away from

the constraint surface in simulations.

(e) (2 points) Show that the DAE you derived in (c) is well-defined (“easy to solve”),
except for a case of no interest.

(a)

Solution:

The kinetic and potential energies of the system can be written as (q = p):

1
T=gmp'p, V=mge'p (2)

where e’ = [ 0 01 ] The Lagrange function then reads as:
1 . T. T
EzT—V—zc:§mp p —mge p — zc(p) (3)

The dynamics are constructed using:

doc’ oL’ oot @
—— =m — = -mge— z—

dt 9 P Bq ¢ “op

Since we work in cartesian coordinates, the generalized force attached to the friction
is simply Q = F. The model then follows from Euler-Lagrange’s equation:

. de T )

mp +mge + z— = —mp (5a)
op
0=c(p) (5b)
In order to get a standard semi-explicit form, define the states x = [ 5 ] = [ g ]
to get
P=vVv (6&)
z B’

— v —ge — 222 6b
v=ovoge— o (6b)
0= c(p) (6c)

The model has 6 differential variables (p,v € R?) and 1 algebraic variable (2).

Since we have a semi-explicit DAE, the index reduction requires time-differentiation
of the algebraic constraint alone. We have:

oc . oc

C:%p:%\/:

0 (7)




ESS101 Modelling and simulation Page 6 of 11

Since % = 0, this equation does not deliver z yet. We therefore perform a second

time-differentiation:

0 [ Oc Oc T 0% Oc
._ O (0c de. _ t10°¢C %o 3
¢ ap <8pv> v+ apv v 8p2v + pr (8)
We can then assemble the DAE:
p=v (9a)
) T
mv + a—c Z = —myv —mge (9b)
p
ac T 820
= v 9
op v apzv (9¢)
or equivalently:
Is 0 0 v
0 mls g{ v |=| —myv—mge (10a)
0 %C) 0 z —ng—pgv
=M(p)

(d) Drift is avoided by replacing the constraint ¢ = 0 with é + a1é + agc = 0, with
a1, a9 > 0. Hence:

L 0 0 b v
0 mly 2" || v|= —myv — mge (11a)
0 Qe IE) z T2y g%y g c(p)

9p op? 19p 2C\P

(e) The implicit DAE is well-defined if the matrix M (p) is non-singular (implying that
p, Vv, and z can be solved for, given p,v). To prove that M (p) is non-singular,
elementary row or column operations can be performed without changing the de-
terminant. The latter gives for example

I 0 0 I 0 0
det M(p)=det | M(p)- | 0 I3 _%%T =det| 0O mli; 0 .
0 0 1 0 & —nbebe
dc de T oc o
=—a-2- =I5zl (12)
Op Op op

showing that M (p) is non-singular, as long as Hg—gHQ

unless ¢ is independent of q (meaning that it is actually not a constraint).

is non-zero, which is true

3. Consider the mechanical system depicted below. The ball A with mass m has the position
(x1,x2), where z1 is the horizontal and zo the vertical coordinate. The ball is gliding
without friction along a rail that is described by the relation zo = h(zy). Further, the
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ball A is attached to one end of a spring, having the spring constant k. The other end of
the spring (B) is gliding without friction along a vertical rail, so that the spring is always
horizontal.

The forces acting on A are thus the spring force (assuming the neutral position of the force
corresponds to x1 = 0), gravity g, and the normal force N = (N, N3) from the rail.

332 = h(zy)

g

(a) (1 point) Use the relation z9 = h(x1) to find a relation between N; and Nj.

(b) (1 point) Apply Newton’s second law of motion to find a DAE in the variables 1, z2,
v1, 2, N1, N, describing the motion of A. Here vy, vy are the horizontal and vertical
velocities, respectively.

(c) (3 points) What is the index of this DAE?

Solution:

(a) N is orthogonal to the rail, implying

(N1, N2) L (1,%

331) = (LW (z1)) = Ni=-Noh'(21)

(b) The DAE becomes

T1 =11 (13a)
iy = v (13b)
mv, = Ny — kxq (13c¢)
mig = No —mg (13d)
x9 = h(z1) (13e)
Ny = —Noh/(z1) (13f)

(¢) To investigate the index, a first differentiation of the algebraic equations gives

To = h'(xl)jcl & Vo = h’(xl)vl (14&)
Nl = —h/(xl)NQ — Ngh”(.rl)i’l = —h'(a:l)Ng — Ngh//($1)vl, (14b)

delivering one more differential equation. The remaining algebraic equation is
differentiated once more, giving

by = h'(x1)01 + B (1) d101 = B (21)61 + B (2101, (15)
which, using (13c),(13d), again leads to an algebraic equation:

Ny —mg = I (x1)(Ny — kxy) + mh” (z1)vi. (16)
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A third differentiation now gives

NQ = h/(xl)(Nl — k:vl) + h”(I‘l)’Ul(Nl — k:xl) —+ 2mh”(:r31)vli)1 + mv%h"'(xl)vl
= h/<l‘1)(N1 — k01> + h”(a:l)vl (Nl — kxl) + 2h”($1>’l)1(N1 — k‘l’l) + mv%h”’(wl)vl,
(17)

thus finally giving an ODE by combining the original 4 differential equations with
(14b) and (17). Hence, the original DAE has index 3.
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4. (5 points) Consider the model structure
y(t) +ay(t —1) =u(t — 1) +e(t) +vye(t — 1),

where e(-) is a sequence of i.i.d. random variables with zero mean, and the coefficient for u
is known to be 1.

(a) Compute the one-step ahead predictor g(t|t — 1).

(b) What condition(s) need to be fulfilled for this predictor to be useful in practice?

(c) We want to fit the above model to data by minimizing the quadratic criterion

1 N
NZ gt —1))2

t=1

with 07 = [a ’y]. How can the minimizing @ be found? Answer brief and concise!

1 -1

Solution: Using the backward shift operator ¢~
model can equivalently be written as

(alternatively, 2=+ can be used), the

(1 +ag y(t) = ¢ u(t) + (L +g7e(t). (18)

(a) The derivation is given for the general case in the Lecture notes, but in this par-
ticular case it can be done simpler. Rewrite the model as

(1+vq Dy(t) = (v — a)g 'y(t) + ¢ ult) + (1 +yq~ He(t), (19)
or, equivalently,

1
-1
14+ vq

y(t) = [(v=)g™ y(t) + au®)] +e(t) =g(tlt = 1) + (), (20)

where the latter equality follows from the fact that e(t) is the only part of y(t) that
cannot be predicted. Hence, the predictor is given by the difference equation

(L+yq gt —1) = (v — e)y(t — 1) +u(t — 1) (21)

(b) The predictor is a dynamic system with inputs u and y and needs to be stable to
produce useful results. For this, we need to secure that |y| < 1.

(c) Since y depends nonlinearly on 8, the minimization is approached by iteratively
searching for a solution to the equation

VoVn(0) =0

5. (5 points) We want to estimate the parameters 6 = (b1, b2) of an FIR model with predictor

g(t|t — 1) = byu(t — 1) + bau(t — 2).
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Assume the data is generated by the “true” system
y(t) =u(t —1) 4+ 0.7u(t — 2) + e(t),

where both the input u(t) and the noise e(t) have zero mean and are assumed to be uncor-
related (i.e E[u(t)e(s)] = 0,Vt,s). Their covariance functions are given by

Ro(r)= ——, vr.

() = 307’

2l

Compute the asymptotic (when the number of data tends to infinity) estimate of 6.
Hint: recall that the parameters converge to the minimum of the function E[g(t, 0)].

Solution: Find an expression for V(6) = Ee%(t, 0):

V(0) =E[(y(t) - 9(t|t —1))’]

=E[((1—b1)u(t —1) + (0.7 = b2)u(t — 2) +e(t))’]

= (1= b1)*Ru(0) + (0.7 = b2)*Ru(0) + 2(1 = b1)(0.7 = bp) Ru (1) + Re(0)
-) and e(-) are uncorrelated)
(0.7 —b9) + 1

(all other terms disappear, since u
=(1 —bl) (0.7—62) (1 -5y

~—

To find the minimum, we evaluate the gradient:

TV (0) = —2(1 —by) — (0.7 — b) ] _ [ 2b1+b2—2.7] 0

—2(07 — bg) — (1 — bl) b1 +2by — 2.4

which gives the solution by = 1,bs = 0.7, showing that the estimates are consistent,
even though the noise is not white; this is due to the fact that the input and the noise
are uncorrelated. Remark: it can easily be verified that the computed extremum point
is really a minimum.
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6. (5 points) Consider the following Runge-Kutta equations for integration of an ODE x =
f(x,u):

Ky = f (xz,u(tz))
At
Ing@k+§4KHJQ%mu+Am
At
X1 = Xp, + 7(K1 +K2)

(a) Determine, if possible, the number of stages and the order of the scheme, and whether
it is an explicit or implicit RK scheme.

(b) What is the Butcher array describing the scheme?
(c) Determine the stability function.
(d) Is the scheme A-stable?

Solution:

(a) The RK scheme is implicit and has 2 stages, but the order cannot be determined
in a straightforward way.

(b) The Butcher array is given by
0| O 0
111/2 1/2
| 1/2 1/2

(c) Denoting the Butcher array as
c|l A
b

the stability function is given by R(u) = 1+ ub? (I — pA)~11, where p = AAt and
1 is a column vector with all entries equal to 1. Thus:

1 0 }‘4 F} 142

R(p)=1+p[1/2 1/2] [_M/z L—p/2] |1~ 1-p/2

(d) Since |14 /2| < |1 — p/2| for all p in the left half-plane, |R(u)| < 1 for the same
i, i.e. the scheme is A-stable.

THE END



