
ESS101 Modelling and simulation Teacher: Bo Egardt, tel 031-7723721 (visits twice)
January 2020

This exam contains 14 pages (including this cover page) and 5 problems.

You are allowed to use the following material:

• Modelling And Simulation, Lecture notes for the Chalmers course ESS101, by S. Gros (with brief
annotations)

• Mathematics Handbook (Beta)

• Physics Handbook

• Chalmers approved calculator

• Formula sheet, appended to the exam

Guidelines:

• Organize your work in a reasonably neat and coherent
way. Work scattered all over the page without a clear
ordering may receive less credit.

• Mysterious or unsupported answers will not receive
credit, but an incorrect answer supported by substan-
tially correct calculations and explanations will receive
partial credit.

• None of the proposed questions require extremely long
computations. If you get caught in endless algebra, you
have probably missed the simple way of doing it.

• The nominal grade limits are 22 (3), 28 (4) and 34 (5).

Problem Points Score

1 8

2 8

3 10

4 10

5 4

Total: 40

GOOD LUCK !!
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1. Lagrange modelling Consider the system depicted in Fig. 1, made of two masses m. The upper
mass is sliding without friction on the surface depicted in light blue, provided by the scalar equation
C (p) = 0. The red link between the masses consists of of a spring-damper combination. The spring
has a rest-length L, and its potential energy is given by

Vspring =
1

2
K (‖p1 − p2‖ − L)

2
, (1)

whereas the damper produces a virtual work given by

δW = −γ (ṗ1 − ṗ2)
>

(δp1 − δp2) . (2)

(a) (4 points) Derive a system of (second-order) differential equations that describes the dynamics
of the system.

(b) (4 points) What is the DAE approximating your model for K →∞?
Hint: In this case, the virtual work of the damper is zero.

Figure 1: Illustration of the system of question 1.

Solution:

(a) We form the Lagrange function

L =
1

2
m

2∑
k=1

(
ṗ>k ṗk − g e>pk

)
− Vspring − zC(p1) (3)

where e> =
[

0 0 1
]
. We will use:

q =

[
p1

p2

]
(4)

The dynamics can be constructed using:

d

dt

∂L
∂q̇

>
= m

[
q̈1

q̈2

]
(5)

∂L
∂q

>
= −mg

[
e
e

]
−K

(
1− L

‖p1 − p2‖

)[
p1 − p2

p2 − p1

]
− ∂C

∂q

>
z (6)

The generalized (non-conservative) forces caused by the damper are given by (2) (as the
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coefficients of the virtual displacements):

Qp1
= −γ (ṗ1 − ṗ2) (7a)

Qp2
= γ (ṗ1 − ṗ2) (7b)

We can then assemble the model equations

m

[
p̈1

p̈2

]
= −mg

[
e
e

]
−K

(
1− L

‖p1 − p2‖

)[
p1 − p2

p2 − p1

]
− γ

[
ṗ1 − ṗ2

ṗ2 − ṗ1

]
− ∂C

∂q

>
z

(8)

(b) In order to form the DAE approximation of this system, we replace the spring by a rigid
link, i.e. we can e.g. introduce the new scalar constraint:

C =
1

2
‖p1 − p2‖2 − L2 = 0 (9)

We observe that

∂C
∂q

>
=

[
p1 − p2

p2 − p1

]
(10)

It can be verified that the Lagrange equations then yield similar expressions as (8), but
where the potential energy stemming from the elastic link is replaced by:

−∂C
∂q

>
z2 = −z2

[
p1 − p2

p2 − p1

]
(11)

i.e. we obtain (also omitting the friction term as indicated by the hint)

m

[
p̈1

p̈2

]
= −mg

[
e
e

]
− z2

[
p1 − p2

p2 − p1

]
− ∂C

∂q

>
z1, (12)

where z1 is the Lagrange multiplier introduced in (a). An interpretation of the constrained
formulation of the problem is that the constraint C yields a “spring-like” force term whose
magnitude is adjusted (via z2) to force the link to have a constant length L.
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2. Differential-Algebraic and Implicit Differential Equations

(a) (4 points) Consider the following electrical circuit, where an ideal voltage source is supplying a
capacitor.

Let u be input signal and let z = [v I]T be generalized state vector.

1. Determine a DAE on the form
Eż + Fz = Gu

.

2. What is the index for the system?

3. How many states does the system have (i.e. how many independent initial conditions need
to be specified in order to simulate the system)?

(b) (4 points) Assume that another capacitor is added to the circuit in (a), as depicted below.

1. Determine a DAE for the circuit, with u as input and using the variables v1, v2 and I.

2. What is now the index for the system?

3. How many states does the system have?

Solution:

(a) 1. The capacitor obeys the equation I = C dv
dt and the voltage source gives v = u, giving

the DAE [
C 0
0 0

] [
v̇

İ

]
+

[
0 −1
1 0

] [
v
I

]
=

[
0
1

]
u

2. The current I cannot be solved for from the algebraic equation, but differentiating
gives

v̇ = u̇ ⇒ I = cu̇

and another differentiation would provide İ. Hence, the original DAE has index 2.

3. Since v = u and I = cu̇, the variables are defined using only the input. Put differently,
the initial conditions must satisfy v(0) = u(0) and I(0) = cu̇(0). Hence, the number
of states is 0.

(b) 1. The circuit is described by the DAE system

C1v̇1 − I = 0 (13)

C2v̇2 − I = 0 (14)

v1 + v2 = u (15)

2. Again, in order to solve for I, a differentiation is needed:

v̇1 + v̇2 = u̇ ⇒
( 1

C1
+

1

C2

)
I = u̇ (16)
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and similarly to the case in (a), another differentiation would provide İ. The DAE is
therefore of index 2.

3. The initial conditions must satisfy v1(0) + v2(0) = u(0) and
(

1
C1

+ 1
C2

)
I(0) = u̇(0),

which leaves one degree of freedom. Hence, there is only one state.
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3. System Identification

(a) (2 points) Consider the following ARX one-step-ahead predictor

ŷ(t) = ay(t− 1) + bu(t− 1). (17)

Assume that the following data set is available

[y(0), y(1)] = [0, 1] (18)

[u(0), u(1)] = [1, 0] (19)

Write the predictor (17) in the linear regression form ŷ(t) = h(t)T θ and find the least-squares
estimate for a, b, given the available data.

(b) (2 points) A DC-motor is described by the state equation

ẋ =

[
−R/L −Ke/L
Km/Jm −b/Jm

]
x +

[
1/L

0

]
u (20a)

y =
[
0 1

]
x (20b)

with x1 = i (current) and x2 = ω (angular speed). The model has 5 parameters R, L, Jm, Km,
and Ke. How many of these parameters can be identified from experimental input-output data
u, ω? Motivate your answer!

(c) (6 points) Consider the model structure

y(t) + αy(t− 1) = βu(t− 1) + e(t) + γe(t− 1), (21)

where e(·) is a sequence of i.i.d. random variables with zero mean.

1. Compute the one-step ahead predictor for the model (21).

2. How can the Newton method be used to minimize the quadratic criterion

VN (θ) =
1

N

N∑
t=1

(y(t)− ŷ(t|t− 1))2 (22)

with θT =
[
α β γ

]
? (Give a short and concise answer).

3. Give an equation that describes a Newton step for the solution above, assuming a Gauss-
Newton approximation is used.

Solution:

(a) The linear regression form is

y(t) = [y(t− 1) u(t− 1)]

[
a
b

]
, (23)

and the least squares estimate of the parameters can be found by θ̂LS = (HTH)−1HTy.
Using the available data we have that

H =

[
y(0) u(0)
y(1) u(1)

]
=

[
0 1
1 0

]
, y =

[
y(0)
y(1)

]
=

[
0
1

]
. (24)

Hence the least squares estimate is θ̂LS = [a b] = [1 0].

(b) The input-output relation can be expressed by the transfer function, which becomes

G(s) =
Ω(s)

U(s)
=

Km

(R+ Ls)(b+ Jms) +KeKm

=
Km/LJm

s2 + (R/L+ b/Jm)s+ (Rb+KeKm)/LJm
. (25)



ESS101 Modelling and simulation Page 8 of 14

Since the transfer function has only 3 parameters, it means that only 3 parameters can be
determined from input-output data.

(c) Using the backward shift operator q−1 (alternatively, z−1 can be used), the model can
equivalently be written as

(1 + αq−1)y(t) = βq−1u(t) + (1 + γq−1)e(t). (26)

1. The derivation is given for the general case in the Lecture notes, but in this particular
case it can be done simpler. Rewrite the model as

(1 + γq−1)y(t) = (γ − α)q−1y(t) + βq−1u(t) + (1 + γq−1)e(t), (27)

or, equivalently,

y(t) =
1

1 + γq−1

[
(γ − α)q−1y(t) + βq−1u(t)

]
+ e(t) = ŷ(t|t− 1) + e(t), (28)

where the latter equality follows from the fact that e(t) is the only part of y(t) that
cannot be predicted. Hence, the predictor is given by the difference equation

(1 + γq−1)ŷ(t|t− 1) = (γ − α)y(t− 1) + βu(t− 1) (29)

2. The minimization is approached by searching for a solution to the equation

∇θVN (θ) = 0 (30)

using the Newton method (since VN (θ) is nonlinear in θ).

3. Using the Gauss-Newton approximation, we obtain

∇θVN (θ) = − 2

N

N∑
t=1

∇θŷ(t|t− 1, θ)
(
y(t)− ŷ(t|t− 1, θ)

)
∇2
θVN (θ) ≈ 2

N

N∑
t=1

∇θŷ(t|t− 1, θ)∇θŷ(t|t− 1, θ)T

The Newton step is obtained by solving the following system of linear equations for
∆θ:[ 1

N

N∑
t=1

∇θŷ(t|t− 1, θ)∇θŷ(t|t− 1, θ)T
]
∆θ =

1

N

N∑
t=1

∇θŷ(t|t− 1, θ)
(
y(t)− ŷ(t|t− 1, θ)

)
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4. Simulation

(a) (4 points) Write a pseudo-code (algorithm) that would deploy an IRK scheme for an implicit
DAE

F (ẋ, x, z,u) = 0 (31)

Be specific enough that someone could code it without knowing what the algorithm is about.

(b) (3 points) Verify that the (non-autonomous) scalar ODE

ẋ(t) = f(x(t), t), x(0) = x0 (32)

can be transformed into the (autonomous) ODE

ż(t) = f(z(t)) (33)

using zT (t) =
[
x(t) t

]
. By comparing the RK equations in the two cases, show that the

condition ci =
∑s
j=1 aij arises naturally, if we want the RK method to give the same numerical

approximation for the two versions of the same problem.

(c) (3 points) Consider an integration scheme, described by the following Butcher array:

0 0 0
1 1/2 1/2

1/2 1/2

1. Determine the stability function.

2. Is the scheme A-stable?

Solution:

(a) The pseudo-code will look like

Algorithm: Integration of implicit ODE

Input: x0, u(t0), . . . ,u(.), α and ∆t
Set K, z = 0 (or any better initial guess)
for k = 0 : N − 1 do

while ‖r (K, z,xk,u(.))‖ > tol do

Evaluate:

r (K,xk,u(.)) =

 F (K1, z1,xk + ∆t
∑s
i=1 a1iKi, u(tk + c1∆t))
...

F (Ks, zs,xk + ∆t
∑s
i=1 asiKi, u(tk + cs∆t))

 = 0

and

∂r (K, z,xk,u(.))

∂w

where w gathers K1,...,s and z1,...,s.
Take the Newton step

w← w − α∂r (K, z,xk,u(.))

∂w

−1

r (34)

Take the integrator step:

xk+1 = xk + ∆t

s∑
i=1

biKi (35)

return x0,...N
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(b) First note that

ż(t) =

[
ẋ(t)

1

]
=

[
f(z1(t), z2(t))

1

]
= f(z(t)) (36)

The RK equations for the first problem version are

.Ki = f
(
xk + ∆t ·

s∑
j=1

aijKj , tk + ci∆t
)
, i = 1, . . . , s (37)

where Ki are scalar. For the second version (which is autonomous), the RK equations for
the, now vector Ki = (K1

i ,K
2
i ), become

Ki = f(zk + ∆t ·
s∑
j=1

aijKj) =

[
f
(
xk + ∆t ·

∑s
j=1 aijK

1
j , tk + ∆t ·

∑s
j=1 aijK

2
j

)
1

]
(38)

Since trivially K2
i = 1, the equation can be simplified for Ki = K1

i :

Ki = f
(
xk + ∆t ·

s∑
j=1

aijKj , tk + ∆t ·
s∑
j=1

aij
)
, i = 1, . . . , s (39)

Comparing (37) with (39) gives the desired result.

(c) 1. Denoting the Butcher array as
c A

bT

the stability function is given by R(µ) = 1 + µbT (I − µA)−11, where µ = λ∆t and 1
is a column vector with all entries equal to 1. Thus:

R(µ) = 1 + µ
[
1/2 1/2

] [ 1 0
−µ/2 1− µ/2

]−1 [
1
1

]
=

1 + µ/2

1− µ/2

2. Since |1 + µ/2| ≤ |1− µ/2| for all µ in the left half-plane, |R(µ)| ≤ 1 for the same µ,
i.e. the scheme is A-stable.

5. Newton The Newton method aims at solving a set of equations r (x) = 0 numerically. To that end,
it iterates the recursion:

∂r (x)

∂x
∆x + r (x) = 0 (40a)

x← x + α∆x (40b)

where α ∈]0, 1] is the step-size.

(a) (3 points) The optimization problem

minimizex Φ(x,p), (41)

where x is the optimization variable and p is a vector of parameters, can be approached by
applying the Newton method.

1. How is the function r (x) chosen in this case?

2. Give a sufficient condition for (41) to have a unique solution x?(p) for a given p.
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3. The sensitivity of the solution x?(p) with respect to p is given by the Jacobian:

∂x?(p)

∂p
(42)

Give an expression for this Jacobian, and state what is required for it to exist.

(b) (1 point) Optimization problems of the type (41) are common in system identification, often
with a least-squares criterion. A modification of the Newton method (40) is then often used.
Which is the modification and why is it used?

Solution:

(a) 1. The Newton method is applied to the (necessary) condition for a solution:

r (x) = ∇xΦ(x,p) = 0 (43)

2. Problem (41) is guaranteed to have a unique solution if it is convex, i.e. if the Hessian
∇xxΦ(x,p) is positive definite.

3. The solution x?(p) satisfies the implicit equation (43), i.e.

∇xΦ(x?(p),p) = 0 (44)

We can then use the Implicit Function Theorem and observe that:(
∂

∂x
∇xΦ(x,p)

) ∣∣∣
x=x?(p)

∂x?(p)

∂p
+

∂

∂p
∇xΦ(x,p)

∣∣∣
x=x?(p)

= 0 (45)

or more simply:

∂x?(p)

∂p
= −∇xxΦ(x,p)−1∇xpΦ(x,p)

∣∣∣
x=x?(p)

(46)

This calculation is only possible if the square matrix ∇xxΦ(x,p) is full rank (which is
the case if the problem is convex).

(b) For least-squares problems, the derivative of r(x), i.e. the Hessian of Φ, is often simplified
and replaced by a Gauss-Newton approximation, which is simpler to compute and which
automatically ensures positive semidefiniteness of (the approximation of) the Hessian.

THE END
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Appendix: some possibly useful formula

• Lagrange mechanics is built on the equations:

d

dt

∂L
∂q̇
− ∂L
∂q

= Q, L (q, q̇, z) = T − V − z>C, C = 0, 〈δq, Q〉 = δW, ∀ δq (47)

The kinetic and potential energy of a point mass are given by:

T =
1

2
mṗ>ṗ, V = mgp3 (48)

respectively, where p ∈ R3 is the position of the mass in a cartesian reference frame having the
third coordinate as the vertical axis pointing up. The generalized forces are identical to the external
forces applied to a point mass if the position of that point is expressed in cartesian coordinates in
the generalized coordinates q.

• In the case T = 1
2mq̇>W q̇ with W constant V = V (q) and C = C (q), the Lagrange equations

simplify to the dynamics in the semi-explicit index-3 DAE form:

ṗ = v (49a)

W v̇ +
∂C

∂q

>
z = Q− ∂V

∂q

>
(49b)

0 = C (q) (49c)

• The Implicit Function Theorem (IFT) guarantees that a nonlinear set of equations

r (y, z) = 0 (50)

“can be solved” in terms of z for a given y iff the Jacobian ∂r(y,z)
∂z is full rank at the solution. More

specifically, it guarantees that there is a function φ (y) such that

r (y, φ (y)) = 0 (51)

holds in the neighborhood of the point y where the Jacobian is evaluated. Furthermore, the IFT
specifies that:

∂z

∂y
= −∂r

∂z

−1 ∂r

∂y
(52)

• For solving a problem r (x) = 0, Newton iterates:

x← x− α ∂r

∂x

−1

r (53)

until r (x) ≈ 0 where α ∈ [0, 1]

• Runge-Kutta methods are described by:

c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs

Kj = f

(
xk + ∆t

s∑
i=1

ajiKi, u (tk + cj∆t)

)
, j = 1, . . . , s (54a)

xk+1 = xk + ∆t

s∑
i=1

biKi (54b)

• The stability function for RK methods is given by

R(µ) = 1 + µbT (I − µA)−11 =
det(I − µA+ µ1bT )

det(I − µA)
, µ = λ∆t (55)
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• For ERK methods, the relationship between the (minimum) number of stages s to the order o is
given by:

s 1 2 3 4 6 7 9 11 . . .

o 1 2 3 4 5 6 7 8 . . .

Table 1: Stage to order of ERK methods

• Collocation methods use:

ẋ(tk + ∆t · τ) ≈ ˙̂x(tk + ∆t · τ) =

s∑
i=1

Ki`i(τ), τ ∈ [0, 1] (56)

x(tk + ∆t · τ) ≈ x̂(tk + ∆t · τ) = xk + ∆t

s∑
i=1

KiLi(τ) (57)

where the Lagrange polynomials are given by:

`i(τ) =

s∏
j=1,j 6=i

τ − τj
τi − τj

, and Li(τ) =

∫ τ

0

`i(ξ)dξ (58)

The Lagrange polynomials satisfy the condition of

Punctuality: `i(τj) =

{
1 if j = i
0 if j 6= i

(59)

and enforce the collocation equations (for j = 1, . . . , s):

˙̂x(tk + ∆t · τj) = f (x̂(tk + ∆t · τj), u (tk + ∆t · τj)) , in the explicit ODE case (60a)

F
(

˙̂x(tk + ∆t · τj), x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the implicit ODE case (60b)

F
(

˙̂x(tk + ∆t · τj), ẑj , x̂(tk + ∆t · τj), u (tk + ∆t · τj)
)

= 0, in the fully-implicit DAE case

(60c)

• Gauss-Legendre collocation methods select the set of points τ1,...,s as the zeros of the (shifted)
Legrendre polynomial:

Ps (τ) =
1

s!

ds

dτs

[(
τ2 − τ

)s]
, (61)

implying that the Lagrange polynomials also satisfy the condition of

Orthogonality:

∫ 1

0

`i(τ)`j(τ) dτ = 0 for i 6= j (62)

They achieve the order ‖xN − x (tf)‖ = O
(
∆t2s

)
.



ESS101 Modelling and simulation Page 14 of 14

• Maximum-likelihood estimation is based on

max
θ

P [ek = yk − ŷk for k = 1, . . . , N |θ] (63)

If the noise sequence is uncorrelated, then

P [ek = yk − ŷk for k = 0, . . . , N |θ] =

N∏
k=1

P [ek = yk − ŷk |θ ] (64)

• The solution of a linear least-squares problem

θ̂ = arg min
θ

1

2
‖Aθ − y‖2Σ−1

e
(65)

reads as:

θ̂ =
(
A>Σ−1

e A
)−1

A>Σ−1
e y (66)

and the covariance of the parameter estimation based is given by the formula:

Σθ̂ =
(
A>Σ−1

e A
)−1

(67)

• In system identification, given the a plant G(z) and a noise H(z) model description, the one-step-
ahead predictor ŷ(t|t− 1) can be retrieved with

H(z)ŷ(t|t− 1) = G(z)u(t) + (H(z)− 1)y(t) (68)

• The Gauss-Newton approximation in an optimization problem

min
x

J (x) =
1

2
‖R (x)‖2 (69)

uses the approximation:

∂2J

∂x2
≈ ∂R

∂x

> ∂R

∂x
(70)

• The solution to an LTI system ẋ = Ax +Bu is given by:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (71)

and the transformation state-space to transfer function is given by:

G(s) = C (sI −A)
−1
B +D (72)


