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1. The answer must be written in English (even for Swedish students). Use proper grammar and 

punctuation. 

2. All answers need to be motivated, unless otherwise stated. Correct answers without motivation or 

with wrong motivation will not be given full credit. 

3. Answer concisely, but explain all reasoning. Draw figures and diagrams when appropriate. 

4. Write clearly. Unreadable or hard-to-read handwriting will not be given any credit.  

5. Do not use red ink. 

6. Solve only one problem per page. 

7. Sort and number pages by ascending problem order. 

8. Anything written on the back of the pages will be ignored. 

9. Do not hand in empty pages or multiple solutions to the same problem. Clearly cross out anything 

written that is not part of the solution.  
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Question 1: Selecting the right phrases from a list of phrases (4 points) 
(4 points) Four phrases are missing in Fig 1. Please complete the missing phrases using only four phrases from 
the following list of nine phrases. (a) timeouts, (b) slow start period, (c) fast retransmission, (d) two duplicate 
ACKs, (e) maximum segment size, (f) additive increase, (g) selective acknowledgment, (h) explicit congestion 
notification, and (i) probing for usable bandwidth. Choose only the most appropriate phrases. 
 

 
Figure 1 select the correct phrases 

 

The solution is depicted in the following figure.  

 
 
……………………………………………………………………………………………………………………………………………………………………….. 
 
Question 2: true or false questions (18 points)   
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For each of the following statements, please state whether they are true or false. In case you are not sure 
about your answer or the statement is not clear to you, you are welcome to justify your claim briefly (but you 
don’t have to).   
 
2a. (3 points) The advantage of Additive Increase and 
Multiplicative Decrease (AIMD) is that: (i) when additively 
increasing, the ratios do not change, and (ii) when 
multiplicatively decreasing, the ratios indeed change and 
there is a fast response. Note that Fig. 2 might assist you. 
Flase   
 
2b. (3 points) The next sentences consider the key 
differences between flow control and congestion control in 
TCP/IP as studied in class. Flow control basically states that a 
network end-point can transmit only a certain number of 
packets and cannot add more packets to a network until an 
acknowledgment is received. Congestion control works by refusing new TCP/IP connections until congestion 
is resolved. 
Flase 
 
2c. (3 points) In the context of TCP/IP and socket API that were studied in class, a call to accept() can block if 
there are no client connections that became established, i.e., completed the three-way handshake. Moreover, 
a call to read() can block if the receiver’s buffer contains no messages to be read. Furthermore, a call to write() 
can block if there is no sufficient space left at sender’s buffer. Note that a call to socket() cannot block, but it 
can return an error, for example, when the calling process has already too many open file descriptors. 
True 
 
2d. (3 points) A good design for the domain name system (DNS) for the Internet needs to allow frequent writes 
to the database as much as reads to it. Moreover, a good DNS design needs to provide strict consistency 
guarantees. 
Flase 
 
2e. (3 points) The domain name system (DNS) of the Internet 
is hierarchical. That is, it includes root servers at the top-
level, then domain servers at the next level, and then 
subdomain server on the level that follows.  
True. In case the answer said that the names are not exact, 
then this answer got between 2.5 and 3 points --- depending 
on the wordings of the justification. 
 
2f. (3 points) Glue records help to significantly reduce the 
number of server-to-server interactions during a DNS query. 
Fig. 3 illustrates an example in which a host in “chalmers.se” 
wants the IP address for www.google.com. Upon the first 
occurrence of such query, four servers need to participate in 
the name-resolution process. However, if that query occurs 
frequently, the involved servers can ``glue’’ the resource 

Figure 2 AIMD with two users over one link 

Figure 3 DNS queries and replies 
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records to their local memory. By that, the query answer can already be ready, or partially ready, at these 
servers. Thus, the number of interactions will be reduced.     
Flase 
……………………………………………………………………………………………………………….…………………………………………………….. 
 
Question 3: Non-self-stabilizing digital clock synchronization (8 points) 
 
3a. (1 point) Please define the task of digital clock 
synchronization by filling up the following sentences. 
[agreement]: identical clock values  
[progress]: the clock values are incremented every pulse 
 
Fig. 4 contains a non-self-stabilizing algorithm for digital 
clock synchronization.   
  
3b. (1 point) Please explain why this algorithm is not self-
stabilizing. 
 
Because it does not have bounded size variables, i.e., the clock shared variable. Since the actual 
implementation will use finite size variables, self-stabilizing algorithms must include the specification of the 
bound, MAXINT, on the variable size that is safe to use. Note that in case of a single transient fault, MAXINT 
can be reached at once. Thus, if MAXINT is too small, there is no guarantee that the clock will ever satisfy the 
task requirement of agreement.      
 
3c. (6 points) Please demonstrate that within O(d) pulses, a system that run the algorithm presented in Fig. 4 
satisfies the task of digital clock synchronization, where d is the graph diameter. Your proof should include all 
the key steps of the complete proof. Please assume that transient faults cannot occur (not even before the 
system starts running). Moreover, please use the assumption that were used in class. 
 
A very similar proof was given in class and it also appears in Chapter 6.1 of the textbook. 
 

 

Question 4: Super-self-stabilizing colouring in a directed ring with a distinguished processor (18 points) 
 
4a. (1 point) please define the task of vertex colouring (for 
general graphs). 
 
Every node has a colour that is not the same colour as any 
of his neighbours.  
 
Let us consider the self-stabilizing algorithm presented in 
Fig. 5 for colouring of a directed ring with a distinguished node, p0. 
 
4b. (6 points) Please show that the algorithm in Fig. 5 
stabilizes within O(n) asynchronous cycles. Your proof needs 
to demonstrate all the key steps of the complete proof. 
 

Figure 4 Non-self-stabilizing digital clock synchronization 

Figure 5  self-stabilizing optimal coloring on a directed ring 
with a distinguished node 
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4c. (1 point) please explain the difference between self-
stabilizing systems and super-self-stabilizing systems. Please 
provide clear statements using the definitions studied in 
class. 
 
Written in the slides and Chapter 7.1 in the textbook. 
 
For items 4d and 4e of this question, let us enhance the 
model of the directed ring that we have considered so far in 
this question. Suppose that the ring is bi-directional, i.e., pi 
can read also x(i+1) mod n rather than just read x(i-1) mod n as well 
as read and write xi. Moreover, non-distinguished nodes can 
be removed from the ring. However, only one node at a time 
can be removed. Whenever an event of node removal occurs 
with respect to pi, both of its neighbours, i.e. x(i-1) mod n and 
x(i+1) mod n, raise interrupts with the parameter 
‘removedNeighbor=i’. This is depicted by the algorithm 
template presented in Fig. 6. 
 
4d. (4 points) please complete (and if needed modify) the algorithm template presented in Fig. 6 so that it 
becomes super-self-stabilizing. In your answer, please 
provide the complete code of your solution. Moreover, 
please state your assumptions clearly.  
 
Chapter 7.1 presents a super-self-stabilizing algorithm for vertex colouring. The algorithm assumes globally 
unique processor identifiers. Therefore, this algorithm does not fit here. There are transformation algorithms 
from a system with a unique identifier to the one that is given. However, the transformation learnt in class is 
not super-self-stabilizing. So instead, we tailor the solution of Chapter 7.1 is a way that is dedicated to the 
given bi-directional ring, see the code below.          

 
4e. (6 points) please prove the correctness of the algorithm that you have provided for item 4d. Your proof 
should include all the key steps of the complete proof. Moreover, please state your assumptions clearly. 
 
To the end of proving that the algorithm is self-stabilizing, we show that, in the absence of transient faults and 
topological changes, the system reaches a safe configuration after which a legal execution starts.  
 
Claim 1 (convergence): within 2(k+1) asynchronous cycles, the processors p0,…,pk have each a colour that is 
unique within their individual neighbourhoods. Moreover, their colours do not change (in the absence of 
transient faults and topological changes).  

Figure 6 template for a super-self-stabilizing algorithm for 
coloring on a directed ring with a distinguished node 
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Proof: This proof is by induction on pk‘s distance, k, from the distinguished processor, p0.  
 
For the case of k=0, we note that x0=3 within a single asynchronous cycle due to line 02, and that the variable 
color cannot change. Moreover, since only pn-1 cannot encode the colour 3 in xn-1, it holds that p0 has a colour 
that is unique to its neighbourhood.  
 
Suppose that the claim is true for every k>0. We show that the claim is true for the case of k+1.  
 
Let c2(k+1) be the configuration the system reaches within 2(k+1) asynchronous cycles. By the induction 
hypothesis, p0,…,pk have each a colour that is unique within their individual neighbourhoods and these colours 
do not change in c2(k+1) (due to the absence of transient faults and topological changes). We argue that, within 
two asynchronous cycle, pk+1 have a colour that is unique within its neighbourhood, pk and pk+2 mod n, and that 
colour does not change (in the absence of transient faults and topological changes).  
 
We start by considering the case of k<n-2. Suppose that xk= xk+1 in c2(k+1). Within one asynchronous cycle, pk+1 
select a colour that is different than the one of pk (due to line 04). Once that happens, the if-statement 
conditions of line 04 cannot hold again for pk+1. Suppose that xk+1= xk+2 in c2(k+1)+1. Within one asynchronous 
cycle, pk+2 selects a colour that is different than the one of pk+1 (due to line 04). Once that happens, the if-
statement conditions of line 04 cannot hold again for pk+2. 
 
The case of k<n-1 is showed by similar arguments to the ones in the case of k<n-2 except that xn-1= x0 cannot 
hold due to the proof of k=1.    

Claim 1’s proof end ☐ 
 
Next, we demonstrate super-self-stabilization. Let R be an execution of the algorithm, such that the starting 
configuration is safe, i.e., p0,…,pn-1 have each a colour that is unique within their individual neighbourhoods 
and these colours do not change (in the absence of transient faults and topological changes). Then, 
immediately after the system start, the environment takes a step that removes node pk: 0<k<n. By line 07, 
pk+1 changes its colour to ⊥ and thus there cannot be any further violation of the coloring task, i.e., the 
requirement of a safe passage to a safe configuration is satisfied. Moreover, within one asynchronous cycle, 
line 04 guarantees that all processors in the system have a legal colour assignment within a single 
asynchronous cycle. Thus, the optimal recovery requirement is satisfied (when starting in the safe 
configuration and then having a single change to the topology).       
 
……………………………………………………………………………………………………………………………………………………………………….. 
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Question 5: Self-stabilizing algorithm for finding the centers with the tree topology (12 points) 
 
Let G:=(V,E) be a graph, where V={p1,...,pn} is the set of vertices and E ⊆ V×V. This question considers only tree 

graphs. A tree is a graph with maximal amount of edges that does not contain a cycle. Let d(i, j) denotes the 

distance, i.e., the length of a shortest path in G, between vertices pi and pj. Let e(i) = max{d(i, j) : pj ∈ V} denote 

the eccentricity of a vertex pi, which is the distance between pi and the farthest vertex from pi in G. Let 

center(G) = {pi ∈ V : e(i) ≤ e(j), ∀pj ∈ V} denote the set of centers of G, the set of vertices in V with minimum 

eccentricity. Jordan (1869) has proved that for trees, there are only two possibilities: (centered trees) exactly 

one center node, or (bicentered trees) exactly two center nodes that are adjacent. 

5a. (1 point) Algorithm 1 presents a template for a self-stabilizing algorithm that finds the center(s) of a tree. 

The template is missing an expression in line 12. Please complete this expression. 

It is simply     

5b. (2 points) Please define the set of legal executions for Algorithm 1 (with the expression that you have 

completed for line 12). 

We say that execution R of Algorithm 1 is legal if in any configuration the following two hold.  

(i) Suppose that pi is a leaf node in the tree. Then, hi=0.  

(ii) Suppose that pi is not a leaf node in the tree. Then, hi=1+   

5c. (6 points) Please demonstrate the convergence for Algorithm 1 (with the expression that you have 

completed for line 12). 

We define the height of non-center node pi as the height of the tree rooted at pi after the removal of the edge 

that leads from pi towards the any of the centers. Given a configuration c, we say that pi‘s height is floating if, 

and only if, pi‘s height is smaller than hi‘s value.  
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Claim 2 implies the convergence property for Algorithm 1, because once it holds for any non-center node pk’’ 

that hk=heightk, which denotes pk‘s height, the center nodes pk calculates hk correctly to be one greater than   

(due to line 12).   

Claim 2 (convergence): within k+1 asynchronous cycles: (i) the minimum floating height in the system is at 
least k, and (ii) hi equals to the height of every node pi that its height is smaller than k. 
  
Proof: This proof is by induction on pk’s height.  
 
For the case of k=0, we note that h0=0 holds within a single asynchronous cycle due to line 11. 
 
Suppose that the claim is true for every k>0. We show that the claim is true for the case of k+1.  
 
Let pk be a node that none of its neighbours are center nodes. Moreover, let (pk, pk’) and (pk, pk’’) be edges that 
leads towards, and respectively, away from the set of center nodes, such that the height of pk’’ is the highest 
among all such neighbours that are the least away from the set of center nodes. By the induction hypothesis, 
we know that heightk’ ≥ heightk’’. Therefore in ck+1,     includes heightk’’ and does not include heightk’ 
when heightk’ > heightk’’, where ck is the configuration the system reaches within k+1 asynchronous cycles. We 
argue that within one asynchronous cycle after ck+1, the system reaches configuration ck+2 in which the claim’s 
invariants (i) and (ii) hold with respect to k+1. In detail, since in ck+1 includes heightk’’ and does not include 
heightk’ when heightk’ > heightk’’, pk calculates hk correctly (due to line 12).   

Claim 2’s proof end ☐ 
 

5d. (1 point) Given Algorithm 1 (with the added expression in line 12, cf. item 5a), how can node pi know 

whether it is part of the center set? Does your answer change in case where there is more than one node in 

the center set? 

In a safe configuration, node pi is part of the center set if, and only if, hi is larger of equal to hj, where pj if any 

neighbor of pi. This can be computed by reading the h-values of all neighbors. Note that this answer does not 

depends on the number of centers of the tree.     

5e. (2 point) Please modify the code of Algorithm 1, if needed, so that every node knows the entire set of 

centers in the graph. Moreover, please state your assumptions clearly. 

In a safe configuration, node pi that is not part of the center set, can know which edge leads to the nearest 

node in the center set. It can simply look for a neighbor that its h-value is greater than its own. 


