Chalmers University of Technology
Computer Science and Engineering

Elad Michael Schiller 2015-01-05

Written exam in EDA387/DIT663 Computer Networks 2015-01-05. Exam time: 4 hours.
Means allowed: Nothing except paper, pencil, pen and English - xx dictionary.

Examiner: Elad Michael Schiller, phone: 073-6439754
Note that student questions can be answered only by phone.

Credits: 30-38 39-47 48-Max
Grade: 3 4 5
Grade (GU) G G VG

1. The answer must be written in English (even for Swedish students). Use proper grammar and
punctuation. - : _ |

2. All answers need to be motivated, unless otherwise stated, Correct answers without motivation or

with wrong motivation will not be given full credit,

Answer concisely, but explain all reasoning. Draw figures and diagrams when appropriate.

Write clearly. Unreadable or hard-to-read handwriting will not be given any credit.

Do not use red ink.

Solve only one problem per page.

Sort and number pages by ascending problem order.

Anything written on the back of the pages will be ignored.

Do not hand in empty pages or multiple solutions to the same problem. Clearly cross out

anything written that is not part of the solution.

e R AL

Page 1 out of 7 pages

Question 1: DNS Lab (6 points)

A user issued the following dig-command to find specific DNS information. The output of running the

command is shown below.
c:\dig>dig -x 129.16.212.14 @nsl.chalmers.se

; <<>> DiG 9.3.2 <<>> -x 129.16.212.14 €nsl.chalmers.se

; (1 server Lfound)

;7 glokal options: printcomd

;7 Got answer:

;3 —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 245

;; flags: gr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITICNAL: 0

;; QUESTION SECTION:
;14.212.16.129 . in~addr.arpa. IN PTR

;; AUTHORITY SECTION: .
16.129%.in-addr.arpa. 600 IN SCA nsl.chalmers.se. cth-nic.chalmers.se.
2014100809 1440C 3600 1209600 600

;; Query time: 41 msec

;; SERVER: 125.16.2.40#53(129.16.2.40)
;; WHEN: Wed Oct 08 15:01:13 2014

;3 MSG SIZE rowvd: 103

1a. (1 point) What did the user want to ask about?

1b. (1 point) Explain the contents of the “QUESTION SECTION”. What is the name of the object type
that was queried?

1c. (2 point) To which DNS server (hostname and IP-address) was the query sent? Is it an authoritative
server or not? Explain and point out how you are able to confirm that it is or not. '

1d. (2 point) Is there any answer in the reply? What information did the reply give to the uset?

Page 2 out of 7 pages

Question 2: DNS (6 points)
The cache-only local name server (res2.chalmers.se) has received a standard query from a local client
about type MX for the name "msn.com". The client is running on a laptop using NOMAD-connection.
Suppose that the server has no such information in the cache.
2a. (1 point) What DNS-information has the client queried to get answer about?
2b. (4 points) Describe clearly the steps that the server will perform in order to provide a reply of the
query to the client. Please remember that you should usc DNS terminology when describing the

different steps that the server has to do when trying to resolve this N'S lookup.

2c¢. (1 point) What will the local server do after obtaining the required DNS information? Explain.

Question 3: IPv6 Addresses and Configuration (10 points)
Note: Please answer these sub-questions separately.

3a. (2 points) What are the types of IPv6 destination addresses? Explain briefly the use of three types
with regards to delivering IPv6 packets to destinations, (Note: TPv6-address type is not the scope).

3b. (1 point) Rewrite the text representation of the following IPv6 address prefix using complete and
optimal zero-compression. :

FF02:0000:0000:0000:0000:0001:FF00:0000/104

3c. (1 point) Rewrite the text representation of the following TPv6-address prefix using compléte and
optimal zero-compression.

2001:0DB8:0000:CD30:0000:0000:0000:0000/64

3d. (2 points)' ‘What are the different address scopes of each of the IPv6 addresses associated with an
interface? Describe three important IPv6 address scopes. (Note: IPv6-address scope is not the type).

3e. (4 points) Explain the stateless autoconfiguration of IPv6-addresses for an interface that is

connecting an IPv6-node to a local Ethernet-based network. When answering, please consider to explain
the procedure (during and after rebooting) needed to autoconfigure the necessary IPv6-addresses for the
interface so that the node will be able to communicate with other IPv6-nodes using the local connection.

Page 3 out of 7 pages

Question 4 (6 points) Socket API: select ()

The following program part contains at least one flaw. Identify and describe the flaw in few short sentences

or points. You do not have to correct the flaw; you should just find and describe it! (Note: you're not looking
for, e.g., syntax errors. Find conceptual flaws in the program.)
Hint: The program uses select () and they are supposed to be non-blocking. Consider which operations can
actually block the processes that execute these programs.
The following program accepts new connections using the listenfd socket. The first byte sent by a client is
expected to be an 8-bit ID.

*

for */

You may assume that the handle_*_error() methods do something sensible.
The helper method register_client(client, id) verifies the client ID is acceptable and if that is the case,
enters the client into a global list. Otherwise it closes the connection. '
The method add_client_sockets_to_readfds() properly adds all active clients in the global list to the
- readfds. It returns the largest socket number it encounters.
handle_registered_clients() handles clients that are ready to send data according to readfds, and
removes clients that close their associated connections from the global list. No data is ever sent to the

clients, the program only receives and processes data sent to it.
int main() { /* dncludes, declarations, etc. */

int listenfd = -1; /* initialization code, such as setting up a
listening socket on listenfd, has been omitted - this is not the error you’re looking

while(1) { :
fd_set readfds; // initialize read set
FD_EZERO{ &readfds);
int maxfd = add_client_sockets_to_readfds(&readfds);
FD_SET{ listenfd, &readfds);
1f(listenfd » maxfd) maxfd = listenfd;

int ret = select{ maxfd+l, &readfds, 0, 0, 0 }; // call select

1f({ -1 == ret) handle_select_error();

if(FD_ISSET (listenfd, &readfds)){//is there a waiting client?

sockaddr_in clientAddr;
socklen_t clientAddrbLen = sizeof (clientAddr);
int client = accept(listenfd,

(sockaddr*) &clientaddr,

&clientAddrLen
Yi
if{ -1 == client) handle_accept_error();
unsigned char id; // receive 8bit client ID
int ret = recv{ client, &id, sizeof(id), 0);

if{ 0 == ret) {
close(client);
continue;
})
if({ -1 == ret) handle_recv_error{);

register_client(client, 14); // register client

t

handle_registered_clients (&readfds);//handle registered
}‘

return 0;

Page 4 out of 7 pages

clients

Question 5 (8.5 points)

We learned in class a self-stabilizing algorithm for BFS spanning tree construction, see the code below. We
define a floating distance in configuration c, as a value stored in ry.dis that is smaller than the distance of p;
from the root, where dis is the distance field of the registers.

&1 Root: do forever

Prove that for every & > 0 and for every 02 for m = 1 to § do write r,, 1= (0,0)
configuration that follows A + 4kA rounds, 03 od
it holds that: 04 Other: do forever o
¢ [f there exists a floating distance, 05 for m =1 {0 § do I, == vead(r,)
then the value of the smallest 06 FirstiFound .= false
floating distance is at least k. 07, dist =1+ min{ir,,.dis Msm<s 3
¢ The value in the registers of every gg tg me=1t0d
processor that is within distance k4 i not FirstFound and Jr.dis = dist -

from the root is equal to its distance 44 write r,:= (1,dish

from the root. 12 FirstFound = true
13 gise
Proof. Note that in every 2A successive 14 vwrite 7, 0= (0.0ish
rounds, each processor reads the registers of 15 od
all its neighbors and writes to each of its 16 od
registers. We prove the lemma by (1, k.

Base Case: Proof for k=1. Distances stored in the registers and internal variables are non-negative; thus the
value of the smallest floating distance is at least 0 in the first configuration. During the first 2A rounds, each
non-root processor p;, computes the value of the variable dist (line 7). The result of each such computation
must be () 1. Let ¢z be the configuration reached following the first computation of the value of dist
by each processor.

Each non-root processor writes to each of its registers the computed value of dist during the 2A rounds that
follow ¢;. Thus, in every configuration that follows the first 4A rounds there is no non-root processor with
value O in its registers. The above proves 3)___
To prove (4 , note that the root repeatedly writes the (5 to its registers in every rounds.
Let ¢; be the configuration reached after these () rounds. Each processor reads the registers of the root
and then writes to its own registers during the 4A rounds that follow () . In this write operation the
Processor assigns (g to its own registers. Any further read of the root registers returns the value (10

; therefore, the value of the registers of each neighbor of the root is (11 following the first A +
4A rounds. Thus, (12 holds as well.

Induction Step. We assume correctness for k13 0 and prove for k + 1. Let m>k be the smallest
floating distance in the configuration cy that follows the first A + 4kA rounds. During the 4A rounds that
follow c4, each processor that reads m and chooses m as the smallest value assigns (14 to its distance
and writes this value. Therefore, the smallest floating distance value is m + 1 in the configuration cyp.1).
This proves (5 :

Since the smallest floating distance is m (15) k, it is clear that each processor reads the distance of a
neighboring processor of distance k and assigns (1) to its distance. w

Page 5 out of 7 pages

Question 6 (8 points)

We learned in class several algorithms for self-stabilizing clock synchronization. Please find below the code
of a couple of them, which we call: converge-to-the-min and -max.

Converge-to-the~-max Converge-to-the-min

01 upon a pulse 01 wpon a'}mise - o

02 f@raﬁ & N(i) do send (7, clock) 02 forall £; & N(i) do send {j,clock,)

03 max dmﬁ 03 min = clock,

04 forall P, ¢ N(i) do ‘ : 04 forall F; e M) do

05 rﬁceive{dadsg,} G5 réceive(clock)

06 if clock, > max then max = clock, 06 if elock; « atin then min = clock,
7 o7 nd

08 Em;m;(= (max + 1) mod ((n+1d + 111 08 {clock, = tmin + 13 mod (24 +1¢

6.a (2 point) What do the constants d and n stand for?

6.b (1 point) Please compare these two algorithms with respect to their scalability property. Which one
scales better? Why?

6.c (1 point) Please compare these two algorithms with respect to the service provided to the application
layer. Which one is easier to work with? Why?

6.d (4 point) Please complete the correctness proof of the algorithm converge-to-the-min

Suppose that no processor ¢y during the first () pulses. Then we can use simple (3 to show
that synchronization is achieved. Otherwise, a Processor ¢4y during the first s pulses. Therefore,
®) pulses after this pomt a configuration ¢ is reached, such that there is no clock value greater than
) : the first) P :

Question 7 (7.5 points)

Please find below Dijkstra’s self-stabilizing algorithm for token circulation, as well as the proof outhne see
Lemma 2.2 to 2.4 and Theorem 2.1. Please prove both Lemma 2.4 and Theorem 2.1, but there is no need to
prove Lemmas 2.2 and 2.3 (and therefore they are steikethrough in the text)!

01 Py do forever

02 it x=x, then

3 x =k el imod{ns1)

G4 Pli=7)y doforever

05 ‘ if x, 7, then

06 X=Xy
Fore G ondl . . el ‘ e i
23}

7.a (4 point) For every configuration ¢, in every fair execution that starts in ¢, P; changes the value of x; at
least once in every n rounds (Lemma 2.4}
7.b (3.5 point) For every possible configuration c, every fair execution that starts in c reaches a safe

configuration with relation to ME within O(n?) rounds {Theorem 2.1)

Page 6 out of 7 pages

Question 8 (6 points)

Show that in a synchronous uniform (anonymous) ring, there is no deterministic self-stabilizing algorithm
for token circulation. (Hint: The answer is similar to the leader election question of the first assignment.)

Question 9 (2 points)

9.a (1 point) Write the definition of: the term set of legal executions and the used it to define the term safe
-configuration.

9.b (1 point) Below please find a leader election algorithm. The question is whether this algorithm is self-
stabilizing. In case you believe that the answer is positive, please prove your answer. Otherwise, please give
a starting configuration, c, such that every fair execution that starts from ¢ does not satisfy the task of self-
stabilizing leader election.

write id to r;

for m := 1to n do Ir,, :=read(r,,)

Leader := (id == maximum {Ir,,.1d | 1<m<n })
(* if Leader == True then act _like_a_leader() *)

B

Page 7 out of 7 pages

