EDA321: Digital Design Solutions of Re-Exam - August 2013

Question 1: (5 points)

Apply deMorgan Theorems to the expressions:

$$\overline{(A+B+C)D}$$
 $\overline{ABC+DEF}$
 $\overline{AB}+\overline{C}D+\overline{EF}$
 $\overline{\overline{A+BC}}+\overline{D(E+F)}$

Solution:

$$\overline{(A+B+C)\cdot D} = \overline{A+B+C} + \overline{D} = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{D}$$

$$\overline{A\cdot B\cdot C + D\cdot E\cdot F} = \overline{A\cdot B\cdot C} \cdot \overline{D\cdot E\cdot F} = (\overline{A}+\overline{B}+\overline{C}) \cdot (\overline{D}+\overline{E}+\overline{F})$$

$$\overline{A\cdot \overline{B}+\overline{C}\cdot D + E\cdot F} = \overline{A\cdot \overline{B}} \cdot \overline{\overline{C}\cdot D} \cdot \overline{E\cdot F} = (\overline{A}+B)(C+\overline{D})(\overline{E}+\overline{F})$$

$$\overline{\overline{A+B\overline{C}}+D\cdot (\overline{E+\overline{F}})} = (A+B\overline{C})(\overline{D\cdot (\overline{E+\overline{F}})}) = (A\cdot B\overline{C})(\overline{D}+(E+\overline{F})) = (A+B\cdot \overline{C})(\overline{D}+E+\overline{F}))$$

Question 2: (15 points)

Minimize the cost of the following function $F(x0,x1,x2,x3,x4) = \Sigma(6,7,23,24,26,28) + D(14,22,30)$. Measure the cost of the minimized function by counting the total number of 2-input gates of the circuit (e.g. a*b + c*d, has cost of 3).

- *a) Using Quine-McCluskey? (9 points)*
- b) using Karnaugh (6 points)

Solution:

$$F(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum m(6, 7, 23, 24, 26, 28) + D(14, 22, 30)$$
a)

$$f(\mathbf{X}_0, \mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4) = \overline{\mathbf{X}_0} \cdot \mathbf{X}_3 \cdot \mathbf{X}_4 + \overline{\mathbf{X}_3} \cdot \mathbf{X}_2 \cdot \mathbf{X}_1$$

This form has a cost of 5.

b)
using Quine-McCluskey:

6	00110	
24	11000	
7	00111	
14	01110	
22	10110	
26	11010	
28	11100	
23	10111	
30	11110	

6,7 (1)	0011x	
6,14 (8)	0x110	
6,22 (16)	x0110	
24,26 (2)	110x0	
24,28 (4)	11x00	
7,23 (16)	x0111	
14,30 (16)	x1110	
22,23 (1)	1011x	
22,30 (8)	1x110	
26,30 (4)	11x10	
28,30 (2)	111x0	

	6,7,22,2	3 (1,1	.6)	x011x	p ₁	
6	,14,22,3	0 (8,1	(6)	xx110	p 2	
2	4,26,28	30 (2	,4)	11xx0	P 3	
Prime			Μ	interm		
implicant	6	7	2:	3 24	26	28
$p_1 = x 0 1 1$. x		1			
$p_2 = x \times 11$	0 1				_	
$p_3 = 11xx$	0				$\sqrt{}$	$\sqrt{}$

P1, P3 are essential prime implicants and cover the function F resulting in the following form:

$$f(x_0, x_1, x_2, x_3, x_4) = \overline{x_0} \cdot x_3 \cdot x_4 + \overline{x_3} \cdot x_2 \cdot x_1$$

This form has a cost of 5.

Question 3: (20 points)

- a) Describe an unsigned binary multiplication between a 4-bit multiplier x4x3x2x1 and a 4-bit multiplicand y4y3y2y1. (3 points)
- b) Draw the circuit for a 4-bit Array Multiplier and describe how it works. (10 points)
- c) Show the critical path of the 4-bit Array Multiplier? (3 points)
- *d)* Why is it faster than a serial multiplier? (4 points)

Solution:

- a) Lecture 11, slide 15
- b) Lecture 11, slide 18
- c) Lecture 11, slide 18

(Above mentioned lecture slides can be found at the end of this document)

d)

A serial multiplier checks the LSbit of he multiplier and accordingly adds the multiplicand, subsequently it shifts the multiplier. In total a multiplication of N-bits numbers needs N additions and N shifts of N-bit numbers.

Therefore, the serial multiplier would have a delay of:

N*(delay of N-bit addition + N-bit shift) >= N*(delay of N-bit addition) which is >= N*logN* (FA delay), assuming a CLA or = N*N*(FA delay), assuming a ripple carry adder

On the other hand the delay of the array multiplier is about 2*N*(FA delay) and consequently it is faster.

Question 4: (15 points)

Consider a sequence detector circuit, which detects the sequence "01". It has one input W and one output Z (each of 1-bit). The output Z is equal to 1 if in two consecutive (immediately preceding) clock cycles the input was equal to 0 and then 1; otherwise the value of Z is equal to 0. All changes in the circuit occur on the positive edge of a clock signal.

e.g.

Clock cycle:	TO	T1	<i>T2</i>	Т3	<i>T4</i>	T5	<i>T6</i>	<i>T7</i>	T8	T9
W:	0	1	0	1	1	0	0	0	1	1
<i>Z:</i>	0	0	1	0	1	0	0	0	0	1

- *a) Draw the state diagram of the circuit. (2 point)*
- *b)* Fill in the state table of the circuit and make a state assignment. (5 points)
- c) Draw the actual implementation of the circuit after extracting the Boolean functions of each D-flip-flop. (5 points)
- d) Did you create a Mealy or a Moore type of circuit? What is the difference between the two types? (2 points)
- e) What was your choice for the state-assignment? Why? (1 point)

Solution:

- a) similar to Lecture 4, slides 38-40
- b) similar to Lecture 4, slides 41-42
- c) similar to Lecture 4, slides 44-45

(Above mentioned lecture slides can be found at the end of this document)

- d) first part of the answer depends on your implementation. The output of a Moore type FSM depends only on the current state, while the output of a Mealy depends in addition to the input of the FSM.
- e) Depends on your state assignment. In general a binary or gray encoding would require less bits than a one-hot encoding, while the later would be faster. In some cases the binary would be slower than the gray encoding, but this depends on the state-diagram, how the transitions between states happen, and how can one "match" the output encoding with the state-assignment.

Question 5: (8 points)

Use partitioning to minimize the number of states in the following Finite State Machine (FSM).

- a) First create the state table of the FSM. (1 points)
- *b) Minimize the number of state using partitioning.* (5 points)
- c) Create the state table of the minimized version of the FSM. (1point)

d) Draw the state diagram of the minimized version of the FSM. (1point)

Solution:

Input Sequence	Present State		xt State X=1	X=0	utput X=1
Reset 0 1 00 01 10	S0 S1 S2 S3 S4 S5 S6	S1 S3 S5 S0 S0 S0 S0	S2 S4 S6 S0 S0 S0 S0	0 0 0 0 1 0	0 0 0 0 0

a)

b)

P1= (S0 S1 S2 S3 S4 S5 S6)

P2= (S0 S1 S2 S3 S5) (S4 S6)

P3= (S0 S3 S5) (S1 S2) (S4 S6)

P4= (S0) (S3 S5) (S1 S2) (S4 S6)

c)

Input		Nex	t State	Output		
Sequence	Present State	X= 0	X= 1	X= 0	X= 1	
Reset	S0	S1'	S1'	0	0	
0 + 1	S1'	S3'	S4'	0	0	
X0	S3'	S0	S0	0	0	
X1	S4'	S0	S0	1	0	

Question 6: (9 points)

(a) (6 points)

Draw the block diagram of a 4x4 memory, using as "building blocks" D flip-flops and logic gates. The memory has the following inputs:

- DataIN(0), DataIN(1), DataIN(2), DataIN(3),
- Write-enable,
- Address(0), Address(1)
- Reset, Clock

And the following outputs:

• DataOUT(0), DataOUT(1), DataOUT(2), DataOUT(3),

The D flip-flop has the following interface:

(b) (3 points)

Taking the above 4x4 memory as a black box (not having the ability to change its internal design) what can we add to use it as a 16x1 memory?

Solution:

- a) lecture 11, slide 34 (but for 4x4 instead of 4x3)
- b) a column multiplexer as shown in lecture 11, slide 39

(Above mentioned lecture slides can be found at the end of this document)

Question 7: (5 points)

Explain the advantages and disadvantages of the following computing alternatives:

- 1. ASICs (Application Specific Integrated Circuits)
- 2. Field Programmable gate Arrays (FPGAs)
- 3. General Purpose processors (running software)

Solution:

Lecture 12 Slide3

(Above mentioned lecture slides can be found at the end of this document)

Question 8: (12 points)

Explain the timing constraints of a D flip-flop.

- *a)* What is the propagation time, setup time and hold time? (6 points)
- b) Make a timing diagram to show the above time constraints in a D flip-flop. (3 points)
- c) Explain when a flip-flop may enter a metastable state. (3 points)

Solution:

- a) In lecture 16 slide 18
- b) something similar to lecture 16 slide 19
- c) In lecture 16 slide 31

(Above mentioned lecture slides can be found at the end of this document)

Question 9: (6 points)

- a) Explain the difference between permanent, transient and intermittent faults. (3 points)
- b) Name at least 2 causes for each type of faults. (3 points)

Solution:

In lecture 13 slide 5

(Above mentioned lecture slides can be found at the end of this document)

Question 10: (5 points)

What is the yield for the following wafer:

Solution:

Lecture 13 slide 10

(Above mentioned lecture slides can be found at the end of this document)

Lecture Slides

Question 3:

Adding Partial Products

y0 **Array Multiplier** x₀ ppk χi 0 х1 ci 0 FA **x2** CO ppk+1 **x3** Critical path р3+ **p2**[↓] p1 **† p**0 + p6[↓] **p**5[↓] p4 + EDA322 Digital Design,

I. Sourdis, CSE, Chalmers

2015-2016, Lecture 11

Manual design steps (1): specifications

Specifications:

- 1. the circuit has one input, w, and one output, z.
- 2. all changes in the circuit occur on the positive edge of a clock signal.
- 3. the output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1. otherwise, the value of z is equal to 0.

Clockcycle:	t ₀	t ₁	t ₂	t ₃	t ₄	t 5	t ₆	t ₇	t ₈	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	0	1	0	0	1	1	0

EDA322 Digital Design, 2015-2016, Lecture 4

I. Sourdis, CSE, Chalmers

2

Manual design steps (2): state diagram

- starting state A: when power is on or reset signal is applied.
- As long as w is 0, it remains in A.
- After $w \rightarrow 1$, it moves to state B.
- Then,
 - If $w \rightarrow 0$, it moves back to state A.
 - If w →1, it moves to state C, and z=1.
- When in state C,
 - If $w \rightarrow 0$, back to state A, and z=0;
 - If $w \rightarrow 1$, remain in state C.

EDA322 Digital Design, 2015-2016, Lecture 4

I. Sourdis, CSE, Chalmers

Figure 8.3. State diagram of a simple sequential circuit.

EDA322 Digital Design, 2015-2016, Lecture 4

I. Sourdis, CSE, Chalmers

40

Manual design steps (3): state table

From the state diagram, we have the state table

Flip-flops Next state Present Output Combinational state 7 w = 0w = 1circuit A \mathbf{B} 0 Α C \mathbf{B} 0 A \mathbf{C} A C 1

Combinational circuit

EDA322 Digital Design, 2015-2016, Lecture 4

I. Sourdis, CSE, Chalmers

Manual design steps (4): state assignment

A:	00
B:	01
C:	10

Present	Next st		
state	w = 0	Output	
<i>y</i> ₂ <i>y</i> ₁	Y 2 Y 1	Y 2 Y 1	z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	đ

EDA322 Digital Design, 2015-2016, Lecture 4

B C

I. Sourdis, CSE, Chalmers

4

Manual design steps (5): implementation

From state-assigned table: we have the following Karnaugh maps

EDA321: Solutions of final exam March'13

Final implementation

Question 6:

EDA321: Solutions of final exam March'13

Column MUX in ROMs and RAMs:

- Controls physical aspect ratio
- In DRAM, allows reuse of chip address pins

EDA322 Digital Design, 2015-2016, Lecture 11

I. Sourdis, CSE, Chalmers

Page 39

Question 7:

Computing alternatives

Hardware (Application Specific Integrated Circuits)

Advantages:

· very high performance and efficient

Disadvantages:

- · not flexible (can't be altered after fabrication)
- High NRE Cost

EDA322 Digital design, 2015-2016, Lecture 12

Reconfigurable computing

Advantages:

- much higher performance than software / lower performance than ASIC
- higher level of flexibility than hardware / more difficult to program than SW
- ·fills the gap between hardware and software

I. Sourdis, CSE, Chalmers

Software-programmed processors

Advantages:

- · software is very flexible to change Disadvantages:
- · performance can suffer if clock is not fast
- · fixed instruction set by hardware

Question 8:

Delay in Flip-flops

EDA322 Digital design, 2015-2016, Lecture 16

I. Sourdis, CSE, Chalmers

Page 18

Time parameters for clocked memory elements

EDA322 Digital design, 2015-2016, Lecture 16

I. Sourdis, CSE, Chalmers

Metastability and Asynchronous Inputs

Synchronizer Failure

When FF input changes close to clock edge, the FF may enter the *metastable* state: neither a logic 0 nor a logic 1

It may stay in this state an indefinate amount of time, although this is not likely in real circuits

Logic 0

Small, but non-zero probability that the FF output will get stuck in an in-between state

Oscilloscope Traces Demonstrating Synchronizer Failure and Eventual Decay to Steady State

EDA322 Digital design, 2015-2016, Lecture 16

I. Sourdis, CSE, Chalmers

Page 31

Question 9:

Types of Faults

Transient faults

- Faults that happen only once
 - and it's VERY unlikely to happen again
- Causes:
 - Electromagnetic Interference
 - Neighbors mobile phone
 - Static electricity
 - Various particles hitting the silicon surface
 - Heavy ions such as iron, αparticles, neutrons.
 - · Internal effects
 - Crosstalk, metastability, power supply disturbances

- Permanent faults
 - Faults that are always there
 - Causes:
 - · Design defects
 - · Manufacturing defects
 - · Transistor aging

Intermittent faults

- Faults that come and go (probably periodically)
- Causes: Variations
 - Static: transistors on a chip may not be exactly the same although they were supposed to be
 - · Dynamic: temperature changes

EDA322 Digital Design, 2015-2016, Lecture 13

I. Sourdis, CSE, Chalmers

Question 10:

Circuit Fabrication and Defects

Wafer yield = 17/22 = 0.77

EDA322 Digital Design, 2015-2016, Lecture 13

I. Sourdis, CSE, Chalmers