
EDA284/DIT361 Parallel Computer Architecture Page 1 (10)

CHALMERS TEKNISKA HÖGSKOLA
Institutionen för data- och informationsteknik
Avdelningen för datorteknik

Exam in EDA284 (Chalmers) and DIT361 (GU) Parallel Computer Architecture, Saturday,
March 20th, 2021, 8:30h - 12:30h

Language/Språk: Answers shall be given in English. The results should be submitted via
Canvas in pdf (preferred) or in .docx format.

Solutions/Lösningar: Solutions will be posted on Wednesday, March 24th, 2021 on the Can-
vas page.

Exam review/Granskning: The review date will be posted on the course Canvas page by the
time you receive the email from LADOK.

Aids/Hjälpmedel: Since this is a take-home exam, all aids are allowed during examination.
Plagiarism is of course strictly prohibited and checks will be conducted on all exams.

Grades:

Chalmers
Points 0-23 24-35 36-47 48-60

Grade Failed 3 4 5

GU
Points 0-23 24-41 42-60

Grade Failed G VG

Good Luck!

© Miquel Pericàs, 2021



EDA284/DIT361 Parallel Computer Architecture Page 2 (10)

Problem 1 (12 points)

Given a bus-based system implemented as a Chip Muliprocessor (CMP) that has 3 proces-
sors (namely P1,P2,P3) where each has a private L1 direct-mapped cache connected to
system wide DRAM memory controller, consider the following sequence of memory opera-
tions on two shared 32-bit integers A and B.

1. P1: read B
2. P2: read B
3. P1: write B, 1
4. P2: write B, 2
5. P3: write A, 1
6. P3: read B
7. P2: write A, 2
8. P1: write B, 10

Assume A and B are initialized to 0, cache lines are in an invalid state and the cache line
size is 64 bytes. Consider also that A and B are located on the same cache line. Using
the MESI cache coherence protocol with the state diagram given above (showing both bus
and processor requests transitions), determine:

(a) The cache line coherence state in each processor.

(b) The contents of A and B in the cache and the memory.

(c) The processor action (PrRd, PrWr).

(d) The bus action(s) (BusRd, BusRd(s), BusRd(s), BusRdX, BusUpgr, Flush).

(e) The question states that the two integers (A and B) are shared across the 3 processors.
Does this constitute a false-sharing problem? Why or why not?

(f) Assume now a non-atomic cache subsystem. State two consecutive instructions from
the above sequence that might pose a race condition on the transitions. Mention and
briefly explain (in 2 lines) an approach to resolve the mentioned race condition?

Note: use the tables to answer parts (a, b, c and d). A docx file that contains the tables
is available for download in this link:
https://chalmersuniversity.box.com/s/lwcdsj4xo3lyrucv6b0ull9fgjjwjbr5.

https://chalmersuniversity.box.com/s/lwcdsj4xo3lyrucv6b0ull9fgjjwjbr5


EDA284/DIT361 Parallel Computer Architecture Page 3 (10)

Inst Memory content

- A(0),B(0)

1

2

3

4

5

6

7

8

Inst
P1

Cache content State PrReq BusReq

- - I - -

1

2

3

4

5

6

7

8

Inst
P2

Cache content State PrReq BusReq

- - I - -

1

2

3

4

5

6

7

8

Inst
P3

Cache content State PrReq BusReq

- - I - -

1

2

3

4

5

6

7

8



EDA284/DIT361 Parallel Computer Architecture Page 4 (10)

Problem 2 (10p)

Consider a future 64-way CMP operating in a power-constrained environment. The CMP
can automatically configure itself to run as a 1-, 8- or 64-way core CMP but always using
a fixed power budget. For instance, it can run as a single-core processor by grabbing the
power from the other 63 cores and putting them to sleep and using the additional power
to increase its frequency. Assume for simplicity that sleep and wakeup transition times are
zero, and that power and frequency have a cubic relationship. For instance, if one core uses
the power of all 64 cores, its frequency can increase four-fold (since 43 = 64). We call the
design an EPI-throttled CMP.
Consider a parallel application running on the EPI-throttled CMP. Its execution consists of
four phases and each phase uses a different number of resources. (1) The application
starts as a single-threaded application. This part can not be parallelized and consists of 500
cycles in sequential mode. (2) During the following 4000 cycles, it is parallelized by using all
64 threads. (3) In the third phase, it consumes 4000 cycles running with only 8 threads due
to limited parallelism. (4) During the remaining 1500 cycles, the fourth phase runs with only
one thread and can not be parallelized.

(a) What is the speedup of the application when it runs on the EPI-throttled CMP compared
to running on a single-core machine that uses the same power budget but can operate
at a higher frequency using the aforementioned cubic relationship?

(b) What is the speedup of the application when it runs on the EPI-throttled CMP com-
pared to running on a traditional 64-way CMP that does not provide the reconfiguration
capability?

(c) Assume that a new technology is developed such that the power consumption increases
linearly with frequency. What are the new speedups of problem (a) and (b) respectively?
What can you conclude from the result?



EDA284/DIT361 Parallel Computer Architecture Page 5 (10)

Problem 3 (8p)

Consider the following lock design which we call PLock (for "Pause + Lock").
1 PLock: PAUSE Rx
2 T&S R1 , lock
3 BNEZ R1, PLock
4 RET

PAUSE Rx is a new instruction which stalls the pipeline in the EX stage for Rx cycles, where
Rx is a register. A number threads ’nthreads’ are using this implementation to concurrently
access a critical section. Each thread runs on a classical 5-stage single-issue in-order
pipeline (consisting of Fetch, Decode, Execute, Memory and WriteBack). The cores are
connected by an atomic bus, and the cache coherence protocol is MSI. Assume that all
instructions have a latency of one cycle.

(a) Briefly discuss the pros and cons of this lock implementation? How does this locking
scheme scale?

(b) What is the average number of invalidations per cycle that will be generated, as a func-
tion of Rx and the number of threads ’nthreads’ accessing the critical section? If there
are 8 threads, and one want to keep the bus occupied with invalidations for only 10% of
the time, what value of Rx should be chosen?

(c) Discuss briefly whether it makes sense to combine the above lock with the approach
known as Test-and-Test-and-Set.



EDA284/DIT361 Parallel Computer Architecture Page 6 (10)

Problem 4 (12p)

The following code is to be executed on two processors based on interleaved multithreading
(a.k.a fine-grained multithreading). We first consider a single-issue in-order processors with
a pipeline of 10 stages.

1 int ivec [1024] = {some values ...};
2 int ovec [1024];
3
4 for(i=0; i <1024; i++){
5 if(ivec[i] % 2)
6 ovec[i] = ivec[i];
7 else
8 ovec[i] = -1 * ivec[i];
9 }

10 }

(a) What is the minimum number of concurrent threads that need to be supported so that
the processor can completely eliminate the logic for detecting structural and data haz-
ards and still expect to execute at the maximum throughput of 1 instruction per cycle?

(b) Assume now that the system’s caches are initially empty and that each cache miss
results in a miss latency of 100 cycles. Assume that memory bandwidth is unlimited.
How many threads are now required to keep the pipeline filled and avoid pipeline stalls?

Next the above code is to be executed on a GPU, such that each iteration of the loop is
executed by a different thread of the same thread block. To simplify, assume that each
instruction executes atomically with a latency of a single cycle and that the thread selection
policy is Greedy-Then-Oldest (GTO). The code generated by the compiler for each iteration
is as follows:

1 # GPU kernel code (i := thread index within thread block)
2 void eda284_problem4(int i)
3 {
4 if(ivec[i] % 2)
5 ovec[i] = ivec[i];
6 else
7 ovec[i] = -1 * ivec[i];
8
9 }

10
11 # Assembly output of a RISC -V-like GPU ISA (modified from a clang compilation)
12 eda284_problem4(int i): # @eda284_problem4(int)
13 # register a0 stores parameter value (index i)
14 li64 a1 , ivec # a1 = ivec
15 slli a0 , a0, 2 # a0 = i * 4 ; size of int is 4 bytes
16 add a1 , a1, a0 # a1 = ivec + i * 4
17 lwu a1 , 0(a1) # a1 = ivec [i]
18 andi a2 , a1, 1 # a2 = a1 & 0x1
19 bnez a2 , .LBB0_2 # if(a2 != 0) then jump to LBB0_2
20 neg a1 , a1 # else a1 = -a1
21 .LBB0_2:
22 li64 a2 , ovec # a2 = ovec
23 add a0 , a0, a2 # a0 = ovec + i * 4
24 sw a1, 0(a0) # ovec[i] = a1
25 ret # End of assembly code

(c) Assuming that memory access does not take any extra cycles, what will be the utilization
of execution units (in percentage) and the execution time of a single warp (32 threads)?



EDA284/DIT361 Parallel Computer Architecture Page 7 (10)

(d) Repeat task (c) but assuming now the memory system used in task (b) with caches
initially empty. What will be the new utilization and execution time?



EDA284/DIT361 Parallel Computer Architecture Page 8 (10)

Problem 5 (12p)

The two main programming paradigms for parallel computers are shared memory and mes-
sage passing. Consider the two systems shown in Figure 1. A programming team wants
to implement a parallel matrix multiplication (A × B = C) to study the performance of both
paradigms, where A and B are square matrices (of size N = 1000) and the matrix elements
are of type float. The approach to parallelize the problem over the four cores is shown in
Figure 2. For both systems, assume that each each multiplication instruction and addition
instruction take 1 FLOP to complete. According to the simplified DRAM roofline model, the
matrix multiplication algorithm has been measured to be memory-bound and the arithmetic
intensity (AI) has been measured to be 1.0 FLOPs/Byte.

Figure 1: Two programming paradigms.

Figure 2: Matrix multiplication.

(a) First consider the shared memory system. The DRAM and Bus interconnect both pro-
vides up to 2 GB/s bandwidth and these resources are shared between 4 cores. What is
the total execution time when running the above matrix multiplication on this computer?

(b) Next consider the message passing system. Assume that initially the matrices A and
B are stored in the DRAM memory connected to core 1. The algorithm finalizes when
matrix C is stored back in the memory of core 1. The LAN interconnect supports 1 GB/s
of bandwidth (equally shared between cores requiring data transfers) and these cores
can not start the computation until all required data has been received. The system
provides up to 1 GB/s bandwidth in each DRAM. There is no special hardware support
for message passing in this case. What will be the total execution time?

(c) Instead of using a simple memory copy such as in problem (b), the team plans to use
DMA engines so that the data transfer latency can be reduced by 50% compared to
problem (b). Programming one DMA engine adds an overhead of 0.001s in each step
(consisting of (i) sender user area to sender system area, (ii) sender system area to
network interface, (iii) network interface to receiver system area, (iv) receiver system



EDA284/DIT361 Parallel Computer Architecture Page 9 (10)

area to receiver user area). What will be the new total execution time when running on
this improved message passing system?

(d) Briefly discuss other hardware support that can be added to further optimize message
passing system efficiency?



EDA284/DIT361 Parallel Computer Architecture Page 10 (10)

Problem 6 (6p)

Assume an in-order processor with a store-buffer. Three threads are collaborating to solve a
problem. The following sequence of loads ’L’ and stores ’S’ have been issued by each thread
to variables ’x’, ’y’ and ’z’. The value returned by the load or written by the store is indicated
in parenthesis.
Thread 1: S(x=5) -> L(y=8) -> L(x=5) -> L(y=8) -> L(y=8)
Thread 2: S(y=8) -> S(z=16) -> S(x=2) -> L(x=10)
Thread 3: S(x=17) -> L(x=5) -> L(z=16) -> L(x=2) -> S(x=10) -> S(y=3) -> S(z=18)

(a) Is this sequence of loads and stores possible under SC (sequential consistency)? Try
to construct an order for the above execution that is consistent with SC.

(b) Can this order be relaxed for more efficient execution under TSO (total store order)
rules? Compare with the case of Task (a) and explain the similarity or difference be-
tween the two executions. If optimization is possible, identify at least one instance
(instruction) where this can be applied.


