
Real-Time Systems

Solutions to final exam March 16, 2020 (version 20200316)

PROBLEM 1

a) Liu & Layland’s utilization test for RM compares the accumulated utilization U of a given task set
against a bound URM that only depends on the number of tasks. If U ≤ URM the task set is
schedulable. The utilization of each task depends on the period Ti of as follows: Ui = Ci/Ti. This
means that, if the task period increases, the task utilization will be reduced. Assume that a given
periodic task set is known to pass Liu & Layland’s utilization test for RM. If one of the tasks in the
task set would not be strictly periodic, but instead sporadic, interarrival times between subsequent
instances of the task could be longer (but never shorter) than the period assumed in the periodic
case. In other words, the sporadic task could have a lower (but never higher) utilization than in
the periodic case, and the same would apply for the accumulated utilisation U . Consequently, the
sporadic task set would also pass Liu & Layland’s utilization test for RM.

b) It is obvious that Liu & Layland’s utilization test for RM cannot be used since U = C1/T1+C2/T2 =
0.4 + (15C1)/(10T1) = 0.4 + 1.5 · C1/T1 = 0.4 + 0.6 = 1.0 is greater than the utilization bound
for RM for two tasks, URM = 0.828. It it therefore necessary to use some type of exact analysis
method.

Response-time analysis:.

C1 = 0.4T1

C2 = 15C1 = 15 · 0.4T1 = 6T1

Task τ1 is the highest-priority task since T1 < T2.

R1 = C1 = 0.4T1 ≤ T1.

R2 = C2 + dR2

T1
e · C1. Assume that R0

2 = C2 = 6T1:

R1
2 = 6T1 + d 6T1

T1
e · 0.4T1 = 6T1 + 6 · 0.4T1 = 6T1 + 2.4T1 = 8.4T1

R2
2 = 6T1 + d 8.4T1

T1
e · 0.4T1 = 6T1 + 9 · 0.4T1 = 6T1 + 3.6T1 = 9.6T1

R3
2 = 6T1 + d 9.6T1

T1
e · 0.4T1 = 6T1 + 10 · 0.4T1 = 6T1 + 4T1 = 10T1

R4
2 = 6T1 + d 10T1

T1
e · 0.4T1 = 6T1 + 10 · 0.4T1 = 6T1 + 4T1 = 10T1 ≤ T2

Or, use the following reasoning that takes advantage of the fact that there are only two tasks in
the system. It is clear that task τ1 will meet its deadlines since it is the highest-priority task
and Ci < Ti. From the calculation above we know that the processor is 100% busy executing the
tasks. We also know that the hyper period (least-common-multiple of the task periods) is 10T1.
Since task τ1 will execute 10 times within the hyper period, and the processor is never idle, the
completion time of τ2 will be delayed exactly 10C1 = 10 · 0.4T1 = 4T1 time units. And since
C2 = 15C1 = 15 · 0.4T1 = 6T1 the completion time of τ2 will be (6 + 4)T1 = 10T1, which means
that also τ2 meets its deadlines.



PROBLEM 2

a) While the RM and EDF priority-assignment policies both make similar assumptions regarding the
task model, they differ in the way they affect how the tasks are sorted in the ready queue in the
run-time system. Depending on the system load the outcome will differ, as shown below:

Under normal load conditions it can be shown that there exist task sets that can be scheduled
with dynamic priorities but cannot be scheduled with static priorities. Thus, EDF dominates RM
in terms of schedulability.

Under overload, however, not all task will be able to meet their deadlines. In such situations it
can be shown that more tasks may miss their deadlines if scheduled with dynamic priorities than if
they are scheduled with static priorities. To that end, RM dominates EDF when the performance
goal is to maximise the number of tasks that meet their deadlines.

b) Yes, the task set is still schedulable even if it becomes asynchronous. The reason is that the syn-
chronous case is known to be the worst-case scenario (the critical instant) on a uniprocessor, that
is, where the task response times are maximized. An asynchronous case then means that one or
more tasks may have shorter response times than in the critical instant case.

c) The following conditions apply for pseudo-polynomial time complexity of an NP-complete algorithm:

• The algorithm must be a number problem, that is, the largest number (parameter value) in
a problem instance cannot be bounded by the input length (size) of the problem.

• The time complexity of the number problem can be shown to be a polynomial-time function
of both the input length and the largest number.

Assume a task set with n tasks. For task τi to be schedulable its WCET Ci must not exceed its
deadline Di. Consequently, Ci and Di are both bounded above by the period Ti, which means that
max∀i(Ti) is the largest number in the problem. Since each Ti can be chosen arbitrarily max∀i(Ti)
is not bounded by n (the size of the problem).

Calculating the response-time for task τi requires at most Di iterations of the algorithm. Each
Di is in turn bounded above by Ti. The time it takes to calculate the response times for all tasks
is then bounded above by n · max∀i(Ti), which is a polynomial-time function of both the input
length and the largest number. Consequently, response-time analysis has pseudo-polynomial time
complexity.



PROBLEM 3

a) The WCET of Brake is dependent on the WCET of function Calculate.

WCET of “Calculate”:

WCET (Calculate(x, y)) =

{Declare, result}+ {Assign, result}+ (b+ 1) · {Compare, x 6= 0} +

b · ({And , x &1}+ {Compare, x 6= 0}+ {Add , result + y}+ {Assign, result} +

{Shift , x}+ {Assign, x}+ {Shift , y}+ {Assign, y}) + {Return, result} =

1 + 1 + (b+ 1) · 2 + b · (1 + 2 + 3 + 1 + 3 + 1 + 3 + 1) + 2 = b · 17 + 6

The number of while-loops, b, is controlled by the value of parameter x. Since Calculate is called
with values read from the input ports, the value of x can be at most 1510 = 11112. The loop runs as
long as x is not zero, and shifts x one step to the right for each iteration: 11112, 01112, 00112, 00012,
and 00002. Hence, the loop can run at most b = 4 iterations.

WCET (Calculate(x, y)) = 4 · 17 + 6 = 74 µs

WCET of “Brake”:

WCET (Brake) =

{Declare, v}+ {Declare, p}+ {Declare, f }+ {Assign, v}+ {Assign, p} +

{Call , Calculate(v, p)}+ WCET (Calculate(v, p)) + {Assign, f }+ {Assign,Outport Force} =

1 + 1 + 1 + 1 + 1 + 7 + WCET (Calculate(v, p)) + 1 + 1 =

14 + WCET (Calculate(v, p)) = 14 + 74 = 88 µs

The deadline is not met!

b) As shown in sub-problem a) the deadline is missed by just 1 µs. We therefore need to find a way
to reduce the WCET of Calculate by at least that amount. To that end, we notice that the
if-statement inside the while-loop in Calculate runs one time for every bit of value ’1’ in the
binary representation of x. When x = 15, four bits in the binary representation of x have the value
’1’. If one of these bits instead had the value ’0’, the WCET of Calculate would be reduced by 4
µs (the cost of one assignment and one add statement). We choose to set the least-significant bit
of x to ’0’, as this will lead to the least reduction of the largest input port value (to 1410 = 11102).

WCET (Brake) = 88− 4 = 84 µs

With the data input range [1, 14] for Inport Velocity the deadline is met!

c) We calculate WCET for the new version of Calculate:

WCET (Calculate(x, y)) =

{Declare, result}+ {Assign, result}+ (b+ 1) · {Compare, x 6= 0} +

b · ({And , x &1}+ {Multiply , y ∗ (x &1 )}+ {Add , result + y ∗ (x &1 )}+ {Assign, result} +

{Shift , x}+ {Assign, x}+ {Shift , y}+ {Assign, y}) + {Return, result} =

1 + 1 + (b+ 1) · 2 + b · (1 + 5 + 3 + 1 + 3 + 1 + 3 + 1) + 2 = b · 20 + 6

The original input port data range [1, 15] leads to at most b = 4 iterations of the while-loop.

WCET (Calculate(x, y)) = 4 · 20 + 6 = 86 µs

Each execution of the while-loop now takes 3 µs longer time, leading to a total WCET increase
of 12 µs. Hence, the new version is not a good replacement from a timing perspective.



PROBLEM 4

a) The timing diagram should look like one of the following:

0 10 20 30 t

-
τ2

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ11 τ21 τ21 τ31 τ31 τ41 τ41

τ12 τ22 τ32 τ42 τ52 τ62 τ72 τ82 τ92

0 10 20 30 t

-
τ2

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ21 τ21 τ31 τ31 τ41 τ41

τ12 τ22 τ32 τ42 τ52 τ62 τ72 τ82 τ92

b) The design flaws are the following (see comments in corrected code):

Object ptask = initObject();

Object ptask2 = initObject(); // separate object needed for second task

void T1(Object *self, int u) {

Action4ms();

SEND(MSEC(9), MSEC(8), self, T1, 0); // period of 9ms + deadline of 8ms needed

}

void T2(Object *self, int u) {

Action2ms();

SEND(MSEC(4), MSEC(4), self, T2, 0); // deadline of 4ms needed

}

void kickoff(Object *self, int u) {

BEFORE(MSEC(8),&ptask, T1, 0); // deadline of 8ms needed

BEFORE(MSEC(4),&ptask2, T2, 0); // deadline of 4ms needed

}

main() {

return TINYTIMBER(&ptask, kickoff, 0);

}



PROBLEM 5

a) Since deadline-monotonic scheduling is used, the static task priorities are as follows:

prio(τ1) = M, prio(τ2) = H, prio(τ3) = L.

We can now determine the ceiling priority for each resource:

ceil{Ra} = max{M,H,L} = H (since τ1, τ2 or τ3 may lock the semaphore)

ceil{Rb} = max{M,H} = H (since τ1 or τ2 may lock the semaphore)

We then identify, for each task τi, what tasks with lower priority may block τi and thereby cause
the corresponding blocking factor Bi:

B1 = H3,a = 3 (since τ1 may be blocked by τ3, who locks a resource whose ceiling priority is
higher than or equal to the priority of τ1)

B2 = max{H1,a, H1,b, H3,a} = max{5, 1, 3} = 5 (since τ2 may be blocked by τ1 or τ3 who lock
semaphores whose ceiling priorities are higher than or equal to the priority of τ2)

B3 = 0 (since τ3 has lowest priority of all tasks, and thereby per definition cannot be subject
to blocking)

We can now calculate the task response times, and check whether they are less than or equal to
the corresponding deadline:

R2 = C2 +B2 = 6 + 5 = 11 ≤ D2 = 17.

R1 = C1 +B1 + dR1

T2
e · C2. Assume that R0

1 = C1 = 7:

R1
1 = 7 + 3 + d 7

28e · 6 = 7 + 3 + 1 · 6 = 16

R2
1 = 7 + 3 + d 1628e · 6 = 7 + 3 + 1 · 6 = 16 ≤ D1 = 19

R3 = C3 + dR3

T1
e · C1 + dR3

T2
e · C2. Assume that R0

3 = C3 = 6:

R1
3 = 6 + d 6

19e · 7 + d 6
28e · 6 = 6 + 1 · 7 + 1 · 6 = 19

R2
3 = 6 + d 1919e · 7 + d 1928e · 6 = 6 + 1 · 7 + 1 · 6 = 19 ≤ D3 = 25

All tasks meet their deadlines, so the task set is schedulable.

b) We notice from sub-problem a) that we could let D3 = 19, without causing task τ3 to miss its
deadline, assuming that the original priority ordering is maintained. However, to find out whether
D3 can be even smaller, we also need to investigate a scenario where τ3 is assigned a higher priority.

If we assume that D3 < 17, the static task priorities will be as follows:

prio(τ1) = L, prio(τ2) = M, prio(τ3) = H.

Since the task priorities have changed we need to recalculate the ceiling priorities:

ceil{Ra} = max{L,M,H} = H (since τ1, τ2 or τ3 may lock the resource)

ceil{Rb} = max{L,M} = M (since τ1 or τ2 may lock the resource)

Since the ceiling priorities have changed we need to recalculate the blocking factor Bi:

B1 = 0 (since τ1 has lowest priority of all tasks, and thereby per definition cannot be subject
to blocking)

B2 = max{H1,a, H1,b} = max{5, 1} = 5 (since τ2 may be blocked by τ1, who locks a resource
whose ceiling priority is higher than or equal to the priority of τ2)

B3 = max{H1,a, H2,a} = max{5, 1} = 5 (since τ3 may be blocked by τ1 or τ2 who lock
semaphores whose ceiling priorities are higher than or equal to the priority of τ3)



Since both task and ceiling priorities have changed we need to redo the response-time analysis:

R1 = C1 + dR1

T2
e · C2 + dR1

T3
e · C3. Assume that R0

1 = C1 = 7:

R1
1 = 7 + d 7

28e · 6 + d 7
30e · 6 = 7 + 1 · 6 + 1 · 6 = 19

R2
1 = 7 + d 1928e · 6 + d 1930e · 6 = 7 + 1 · 6 + 1 · 6 = 19 ≤ D1 = 19

R2 = C2 +B2 + dR2

T3
e · C3. Assume that R0

2 = C2 = 6:

R1
2 = 6 + 5 + d 6

30e · 6 = 6 + 5 + 1 · 6 = 17

R2
2 = 6 + 5 + d 1730e · 6 = 6 + 5 + 1 · 6 = 17 ≤ D2 = 17

R3 = C3 +B3 = 6 + 5 = 11.

Thus, all tasks will meet their deadlines, and the task set will be schedulable, if D3 = 11.

PROBLEM 6

a) Perform processor-demand analysis:

First, determine LCM of the task periods: LCM{T1, T2, T3} = LCM{8, 16, 32} = 32.

Then, derive the set K of control points: K1 = {5, 13, 21, 29}, K2 = {13, 29} and K3 = {19} which
gives us K = K1 ∪K2 ∪K3 = {5, 13, 19, 21, 29}.
Schedulability analysis now gives us:

L NL
1 · C1 NL

2 · C2 NL
3 · C3 CP (0, L) CP (0, L) ≤ L

5 (b (5−5)
8
c+ 1) · 3 = 3 (b (5−13)

16
c+ 1) · 3 = 0 (b (5−19)

32
c+ 1) · 11 = 0 3 OK

13 (b (13−5)
8
c+ 1) · 3 = 6 (b (13−13)

16
c+ 1) · 3 = 3 (b (13−19)

32
c+ 1) · 11 = 0 9 OK

19 (b (19−5)
8
c+ 1) · 3 = 6 (b (19−13)

16
c+ 1) · 3 = 3 (b (19−19)

32
c+ 1) · 11 = 11 20 FAIL

21 (b (21−5)
8
c+ 1) · 3 = 9 (b (21−13)

16
c+ 1) · 3 = 3 (b (21−19)

32
c+ 1) · 11 = 11 23 FAIL

29 (b (29−5)
8
c+ 1) · 3 = 12 (b (29−13)

16
c+ 1) · 3 = 6 (b (29−19)

32
c+ 1) · 11 = 11 29 OK

The processor demand in time intervals L = 19 and L = 21 exceeds the length of the interval.
Hence, not all tasks will meet their deadlines.

b) From sub-problem a): LCM{8, 16, 32} = 32.

A simulation of the tasks using EDF scheduling in the interval [0,LCM ] gives the following timing
diagram. We see that, also here, some tasks will not meet their deadlines. More specifically, task
τ3 misses its deadline at time t = 19 and task τ1 misses its deadline at time t = 21.

0 10 20 30 t

-
τ3

↑ ↑↓

τ2

↑ ↑ ↑↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ21 τ31 τ41

τ12 τ22

τ13 τ13



c) Based on the analysis in sub-problem a) we see that there is a processor demand surplus of 23−21 = 2
time units in control point L = 21. Since task τ2 contributes with one instance at that control
point, we need decrease its WCET by 2 time units to C2 = 1. Re-doing the processor-demand
analysis with the new value of C2 verifies that the task set is now schedulable:

L NL
1 · C1 NL

2 · C2 NL
3 · C3 CP (0, L) CP (0, L) ≤ L

5 (b (5−5)
8
c+ 1) · 3 = 3 (b (5−13)

16
c+ 1) · 1 = 0 (b (5−19)

32
c+ 1) · 11 = 0 3 OK

13 (b (13−5)
8
c+ 1) · 3 = 6 (b (13−13)

16
c+ 1) · 1 = 1 (b (13−19)

32
c+ 1) · 11 = 0 7 OK

19 (b (19−5)
8
c+ 1) · 3 = 6 (b (19−13)

16
c+ 1) · 1 = 1 (b (19−19)

32
c+ 1) · 11 = 11 18 OK

21 (b (21−5)
8
c+ 1) · 3 = 9 (b (21−13)

16
c+ 1) · 1 = 1 (b (21−19)

32
c+ 1) · 11 = 11 21 OK

29 (b (29−5)
8
c+ 1) · 3 = 12 (b (29−13)

16
c+ 1) · 1 = 2 (b (29−19)

32
c+ 1) · 11 = 11 25 OK

An updated timing diagram verifies that all tasks now meet their deadlines.

0 10 20 30 t

-
τ3

↑ ↑↓

τ2

↑ ↑ ↑↓ ↓

τ1

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓

τ11 τ21 τ31 τ41

τ12 τ22

τ13 τ13



PROBLEM 7

a) Since rate-monotonic (RM) scheduling is used, the task priorities are as follows:

prio(τ1) = H, prio(τ2) = H, prio(τ3) = H, prio(τ4) = L.

We generate a multiprocessor schedule with tasks τ1, τ2 and τ3 (having the highest priorities)
running on one processor each. Task τ4 is scheduled in the remaining time slots according to the
following diagram (covering the first execution of τ4):

0 100 200 t

-

τ1 ↑ ↑ ↑↓ ↓

τ2 ↑ ↑ ↑↓ ↓

τ3 ↑ ↑ ↑↓ ↓

τ4 ↑ ↑↓

µ1

µ2

µ3

τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

τ14 τ14 τ14

We observe that the first instance of task τ4 completes its execution at t = 211 on processor µ1,
thereby missing its deadline at t = T4 = 200. This happens despite there being significant processor
capacity available on processors µ2 and µ3. A clear case of Dhall’s effect!

b) If task priorities are given according to the rate-monotonic utilization-separation (RM-US) approach
it may be possible to circumvent Dhall’s effect, since that approach gives highest priority to “heavy”
tasks in the task set. In order to make sure that task deadlines are met using the RM-US approach
we need to verify that the total task utilization does not exceed the guarantee bound for RM-US.

The total utilization of the task set is UTotal = U1 + U2 + U3 + U4 = 0.3 + 0.905 = 1.205

The guarantee bound for RM-US is URM−US = m2

3m−2 . Since m = 3, URM−US = 9/7 ≈ 1.285.

Consequently, by using the RM-US approach, all task deadlines for the task set in sub-problem a)
will be met since 1.205 < 1.285. The successful schedule in the hyper period [0, 200] can be seen
in the timing diagram below.

0 100 200 t

-

τ1 ↑ ↑ ↑↓ ↓

τ2 ↑ ↑ ↑↓ ↓

τ3 ↑ ↑ ↑↓ ↓

τ4 ↑ ↑↓

µ1

µ2

µ3

τ14

τ11 τ21

τ12 τ22

τ13 τ23



c) We begin by calculating the utilization Ui for each task:

Ci Ti Ui

τ1 10 100 0.1
τ2 10 100 0.1
τ3 10 100 0.1
τ4 141 200 0.705
τ5 141 200 0.705
τ6 141 200 0.705

Then, number the three processors µ1, µ2 and µ3.

According to the RMFF partitioning algorithm the tasks should be assigned to the processors in
the following (RM) order: τ1, τ2, τ3, τ4, τ5, τ6.

Tasks τ1, τ2, and τ3 can all be assigned to processor µ1, since

U1 + U2 + U3 = 0.1 + 0.1 + 0.1 = 0.3 < URM(3) = 3 · (21/3 − 1) ≈ 0.780

Task τ4 cannot assigned to µ1, since

U1 + U2 + U3 + U4 = 0.3 + 0.705 > 1.0

Task τ4 can be assigned to µ2, since there are no task assigned to that processor.

Task τ5 cannot assigned to µ1, since

U1 + U2 + U3 + U5 = 0.3 + 0.705 > 1.0

Task τ5 cannot assigned to µ2, since

U4 + U5 = 0.705 + 0.705 > 1.0

Task τ5 can be assigned to µ3, since there are no task assigned to that processor.

Task τ6 cannot assigned to µ1, since

U1 + U2 + U3 + U6 = 0.3 + 0.705 > 1.0

Task τ6 cannot assigned to µ2, since

U4 + U6 = 0.705 + 0.705 > 1.0

Task τ6 cannot assigned to µ3, since

U5 + U6 = 0.705 + 0.705 > 1.0

Task τ6 can, consequently, not be assigned to any processor. This means that the given task set
cannot be scheduled using the RMFF algorithm.

d) It is easy to see that, if the “heavy” tasks are assigned to the processors before the “light” tasks, it
is possible to find a task-to-processor assignment for which RM-priority scheduling will meet all
task deadlines.

An example of one such assignment is where each processor contains one “heavy” and one “light”
task. The task utilization on each processor is then 0.1 + 0.705 = 0.805 < URM(2) = 2 · (21/2−1) ≈
0.828, which means that all task deadlines are met on each processor.

Consequently, there exists a task-to-processor assignment for the task set in sub-problem b), such
that all task deadlines will be met when task priorities are given according to the RM policy.


