REAL-TIME SYSTEMS — EDA223/DIT162

Re-exam, June 12, 2019 at 14:00 — 18:00 in the SB building

Examiner:
Professor Jan Jonsson, Department of Computer Science and Engineering

Responsible teacher:
Jan Jonsson, phone: 031-772 5220
Visits the exam at 15:00 and 17:00

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel
Chalmers-approved calculator

Electronic dictionaries may not be used.

Content:
The written exam consists of 7 pages (including cover and hand-in sheet),
containing 7 problems worth a total of 60 points.

Grading policy:

24-35 points = grade 3 24-43 points = grade G (GU)

36-47 points = grade 4

48-60 points = grade 5 44-60 points = grade VG (GU)
Results:

When the grading is completed overall result statistics, and a time and location for inspection,
will be announced on the course home page. Individual results will be available in Ladok.

Language:
Your solutions should be written in English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If we cannot read your solution, we will assume that it is wrong.

6. A hand-in sheet is available at the end of the exam script. Do not forget to submit it together
with your other solution sheets!

GooD Luck!







PROBLEM 1

State whether the following propositions are TRUE or FALSE. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) A necessary schedulability condition for periodic tasks in a single-processor system is that the total
utilization of the tasks is not larger than 1.

b) Hard real-time guarantee cannot be provided for systems with sporadic tasks since the inter-arrival
time of consecutive instances of the tasks is not strictly periodic.

c) For an NP-complete problem to have pseudo-polynomial time complexity the largest number in the
problem must be bounded by the input length (size) of the problem.

d) The RMFF scheduling approach has a utilization guarantee bound that converges towards 33% as
the number of processors become very large.

e) Disabling processor interrupts is a machine-level technique that is generally used to implement mutual
ezclusion on multiprocessor systems.

f) If a given task set is known to be not schedulable, a necessary feasibility test will always report the
answer “no” when applied to that task set.

PROBLEM 2

A fundamental prerequisite for correct concurrent execution of multiple tasks with shared resources is
that the run-time system can guarantee mutual exclusion.

a) State, and explain briefly, the four conditions for deadlock to occur in such systems. (4 points)

b) One way to achieve mutual exclusion in the run-time system is to use semaphores. Describe in detail

the data structure and operations that define a semaphore. (4 points)
PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented
by Shaw in the end of the 1980s.

Assume that the function main (see below) is used as part of a real-time program and that the function,
when called, is allowed to take at most 90 us to execute.

e Fach declaration and assignment statement costs 1 us to execute.
Each function call costs 2 us plus WCET for the function in question.
Each evaluation of the logical condition in an if- or while-statement costs 2 us.

Each add and subtract operation costs 3 us.

e FEach multiply operation costs 5 us.

Each return statement costs 2 us.

All other language constructs can be assumed to take 0 us to execute.






int times(int a, int b) {
return a * b;

}

int methA(int a, int b) {
int p;
int i;

P =a;
i=1;

if (b == 0)
return 1;

while (i < b) {
p = times(p, a);

i = i+1;
}
return p;
}
int methB(int a, int b) {
if (b == 1)
return a;
else

return times(a, methB(a, b-1));

int main() {

if (methA(x, y) > methB(x, y)) {

ans = 'T’;

x=x+y;
else

ans = ’F’;
return 1;

a) Derive WCET for function main by using Shaw’s method and determine whether or not the deadline
of the function (90 ps) will be met. (8 points)

b) Identify two different false paths in the program given above. (2 points)







PROBLEM 4

The TinyTimber kernel makes it possible to implement periodic activities in a C program. Consider a
real-time system with four independent periodic tasks: three hard-real-time tasks (T1, T2, T3), and one
soft-real-time background task BG.

The three hard-real-time tasks all arrive at ¢ = 0 and have a common period of 2400 us, but their
execution is precedence constrained in the following way:

e First, task T1 should execute for 300 us. The relative deadline for task T1 is 1600us.
e Then, task T2 should execute for 800 us. The relative deadline for task T2 is 1200us.
e Finally, task T3 should execute for 500 us. The relative deadline for task T3 is 2100us.

The soft-real-time background task BG arrives at time ¢ = 0, has a period of 1800 us, and at each
invocation executes for 700 us. The relative deadline for the background task is equal to its period.

a) Construct a TinyTimber program with four methods T1(), T2(), T3(), and BG() that have the same
timing behavior as the corresponding tasks mentioned above. On a separate sheet at the end of
this exam paper you find a C-code template. Add the missing program code directly on that sheet
and hand it in for grading together with the rest of your solutions. The code for the functions
Action300(), Action800(), Action500(), and Load700() is assumed to already exist. (5 points)

b) Assuming that the TinyTimber kernel will be used to schedule the four tasks, is it possible to
guarantee that tasks T1, T2, T3 will meet their deadlines? Motivate your answer. Any timing
overhead relating to function calls or the TinyTimber runtime system can be ignored. (3 points)







PROBLEM 5

Consider a system with four periodic tasks and a run-time system employing preemptive deadline-
monotonic (DM) scheduling. The table below shows C; (WCET), D; (deadline) and T; (period) for the
four tasks. The initial arrival time of each task is not known. All values are given in milliseconds.

| |G [Di[T]
1| 8 | 15|20
2| 7 | 30|33
3| 8 | 36 | 41
T4 5 48 50

The four tasks are not independent, but share three exclusive resources R,, Rp, and R.. The run-time
system employs the Immediate Ceiling Priority Protocol (ICPP) to resolve resource request conflicts.
The tasks use the resources in the following way:

e Task 7 first requests Rp and then, while using Ry, requests R,.

e Task 75 first requests Rp and then, while using R;, requests R.; then, while using R, (and Rp),
task 73 requests R,.

e Task 73 first requests R, and then, while using R., requests Rp; then, while using Rp (and R.),
task 73 requests R,.

e Task 74 first requests R. and then, while using R., requests Rp; then, after releasing the two

resources, task 74 requests R,.

The table below shows Hj,;, the maximum time (in milliseconds) that task 7; locks resource R; during
its execution.

I l Hi,a ‘ Hi,b | Hi,c |

T1 2 3 -
T2 2 2 2
T3 3 2 1
T4 2 1 1

Use a suitable analysis method to determine the schedulability of the tasks in the system. Note that
nested blocking is used by all tasks. This could lead to accumulated critical region blocking times in the
final blocking factor. (10 points)

PROBLEM 6

Consider a real-time system with three independent periodic tasks and a run-time system that employs
preemptive single-processor scheduling using the earliest-deadline-first (EDF) priority-assignment ap-
proach. The table below shows C; (WCET), D; (relative deadline) and T; (period) for the three tasks.
For each task 7; it applies that C; < D; < T;. All tasks arrive at time ¢ = 0.

L [G[D:[T]
T1 4 5 10
T2 2 Dz 20
73 | 4 | 256 | 40

Apply processor-demand analysis to determine the smallest positive integer value of D5 for which all the
tasks meet their deadlines. (8 points)







PROBLEM 7

Consider a real-time system with n independent periodic tasks that should be scheduled on a multi-
processor system, using preemptive static-priority scheduling. Global scheduling is one approach for

scheduling tasks on such a system.

a) Explain the meaning of Dhall’s effect in the context of global scheduling. (2 points)

b) Describe how RM-US global scheduling is able to circumvent Dhall’s effect. (2 points)

The table below shows C; (WCET) and T; (period) for a task set with n = 8 periodic tasks. The relative
deadline of each periodic task is equal to its period. All tasks arrive at time ¢ = 0.

L [G [T
T1 2 8
T2 2 b
T3 1 10
T4 3 120
75 | 15 | 30
76 | 60 | 600
77 | 100 | 200
8| 2 16

c) Determine the minimum number of processors needed to guarantee that all tasks in the task set given
above are schedulable using RM-US global scheduling. (3 points)

d) Determine a static-priority ordering of the tasks in the task set given above, assuming that RM-US
global scheduling is used and that the number of available processors is equal to the minimum
number of processors found in sub-problem c). (3 points)







Hand-in sheet with program code for Problem 4.

Anonymous code: ........cccceeeen...

#include "TinyTimber.h"

typedef struct {
Object super;
} TaskObj;

TaskObj A = { initObject() };
TaskObj B = { initObject() };

void T1(TaskObj *, int);
void T2(TaskObj *, int);
void T3(TaskObj *, int);

void T1(TaskObj *self, int u) {

Action300(); // Do work for 300 microseconds

}

void T2(TaskObj *self, int u) {

Action800(); // Do work for 800 microseconds

}

void T3(TaskObj *self, int u) {

Action500(); // Do work for 500 microseconds

}

void BG(TaskObj *self, int u) {

Load700(); // Do background work for 700 microseconds

void kickoff(TaskObj *self, int u) {

}

main() {
return TINYTIMBER(&A, kickoff, 0);

}






