
Real-Time Systems

Solutions to final exam March 18, 2019 (version 20190318)

PROBLEM 1

a) False: For a sporadic task the time interval between two, subsequent, arrivals is guaranteed to never
be less than a minimum value.

b) True: TinyTimber’s AFTER() construct allows the programmer to call a method after a delay
relative to the calling method’s baseline, thereby eliminating any systematic time skew.

c) False: For an NP-complete problem to have pseudo-polynomial time complexity the largest number
in the problem cannot be bounded by the input length (size) of the problem.

d) True: ICPP cannot cause deadlock if all tasks use the protocol to access shared resources.

e) False: The term false path in execution-time analysis refers to a part of the program code that will
never be executed at run-time.

f) True: If we know that the task set is not schedulable then a sufficient test must have resulted in
the outcome ’False’. This is because, for sufficient tests, the outcome ’True’ always means that the
task set is schedulable.

PROBLEM 2

a) In single-processor systems, the mutual exclusion is guaranteed by disabling the processor’s interrupt
service mechanism (“interrupt masking”) while the critical region is executed. This way, unwanted
task switches in the critical region (caused by e.g. timer interrupts) are avoided. This method
is not used in multi-processor systems since interrupt management is typically not synchronized
between the processors.

b) In multi-processor systems with shared memory, a test-and-set instruction is used for handling critical
regions. A test-and-set instruction is a processor instruction that reads from and writes to a variable
in one atomic operation. In a multi-processor system, the atomic operation is guaranteed by locking
(disabling access to) the memory bus during the entire operation.



PROBLEM 3

a) The WCET of Control is dependent on the WCET of function Calc.

WCET of “Calc”:

WCET (Calc(x)) =

{Declare, i}+ {Declare, r}+ {Assign, i}) + {Assign, r} +

(3 + 1) · {Compare, i < 3}+ 3 · ({Multiply, r ∗ x}+ {Assign, r}+ {Add , i + 1}+ {Assign, i}) +
{Subtract , r − 1}+ {Assign, r}+ {Return, r} =

1 + 1 + 1 + 1 + 4 · 2 + 3 · (5 + 1 + 3 + 1) + 3 + 1 + 2 = 4 + 8 + 30 + 6 = 48

WCET of “Control”:

WCET (Control) =

{Declare, c}+ {Declare, r}+ {Assign, c}) +
{Call , Calc(c)}+WCET (Calc(c))+ {Divide,Calc(c)/3 }+ {Assign, r}+ {Compare, r <= 800 } +

max({Shift , r}+ {Assign, r}, {Multiply, 3 ∗ r}+ {Divide, 3 ∗ r/289}) + {Add , 3 ∗ r/289 + 2}) +
{Assign, r}) =

1 + 1 + 1 + 2 +WCET (Calc(c)) + 8 + 1 + 2 +max(2 + 1, 5 + 8 + 3 + 1) + 1 =

17 +max(3, 17) +WCET (Calc(c))

The function Calc(x) calculates the polynomial x4−1 which, with the given input port data range
[−9,+9], has the largest value 94 − 1 = 6560. The comparison in the if-statement in Control

then becomes 6560/3 = 2187 ≤ 800, which is false. Thus, the longer path in the if-statement will
be executed.

WCET (Control) = 17 + max(3, 17) +WCET (Calc(c)) = 17 + 17 + 48 = 82 > 73

The deadline is not met!

b) We notice that, if the shorter path in the if-statement would be executed, we get:

WCET (Control) = 17 + 3 +WCET (Calc(c)) = 17 + 3 + 48 = 68 < 73

Thus, in order to find the largest input port data range for which Control will meet its deadline
we must make sure that the shorter path is always taken. This happens when Calc(c)/3 ≤ 800,
that is, when Calc(c) ≤ 2400. Since Calc(x) calculates the polynom x4 − 1 the largest permitted
data range is [−7,+7], since 74 − 1 = 2400.

c) The new function Calc(x) is functionally compatible with the old function since (x2−1)((x2−1)+2) =
(x2 − 1)(x2 + 1) = x4 − 1. However, the WCET of the new function is significantly smaller:

WCET (Calc(x)) =

{Declare, r}+ {Multiply, x ∗ x}+ {Subtract , x ∗ x − 1}+ {Assign, r} +

{Add , r + 2}+ {Multiply, r ∗ (r + 2 )}+ {Assign, r} + {Return, r} =

1 + 5 + 3 + 1 + 3 + 5 + 1 + 2 = 21

With the original input port data range [−9,+9] we get:

WCET (Control) = 17 + max(3, 17) +WCET (Calc(c)) = 17 + 17 + 21 = 55 < 73

The deadline is met!



PROBLEM 4

a), b) The tasks T1, T2 and T3 should normally reside in three separate objects, but since their
execution is precedence-constrained a solution where they share one object (A) is also correct.

Time max_wcet = 0;

Time start;

Time diff;

void T1(TaskObj *self, int u) {

start = CURRENT_OFFSET();

Action400(); // Do work for 400 microseconds

diff = CURRENT_OFFSET() - start;

BEFORE(USEC(1500), self, T2, 0); // Keep current baseline

}

void T2(TaskObj *self, int u) {

start = CURRENT_OFFSET();

Action600(); // Do work for 600 microseconds

diff += CURRENT_OFFSET() - start;

BEFORE(USEC(2000), self, T3, 0); // Keep current baseline

}

void T3(TaskObj *self, int u) {

start = CURRENT_OFFSET();

Action700(); // Do work for 700 microseconds

diff += CURRENT_OFFSET() - start;

if (diff > max_wcet)

max_wcet = diff;

SEND(USEC(2300), USEC(700), self, T1, 0);

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(700), &A, T1, 0);

}

main() {

return TINYTIMBER(&A, kickoff, 0);

}



PROBLEM 5

The two versions of response-time analysis are:

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rk
i

Tj

⌉

Cj ∀i : Ri ≤ Di (1)

Rk+1
i = Ci +

∑

∀j∈hp(i)

⌈

Rk
i

(Tj − α)

⌉

Cj ∀i : Ri ≤ Di (2)

a) No, we cannot provide a guarantee. This is because the schedulability of task τi based on the analysis
in Eq. (1) only considers the amount of interference by the higher-priority task τj regardless of
whether τj meets its deadline or not. The following example task set demonstrates such a situation,
for the DM priority assignment.

Ci Di Ti

τ1 2 3 5
τ2 4 7 10
τ3 2 12 20

The response time of the lowest-priority task τ3 is R3 = 10. However, task τ2 (which has priority
higher than τ3) misses its deadline (R2 = 8). Therefore, the lower-priority task τ3 meets its deadline
while the higher-priority task τ2 misses its deadline.

b) The interference by task τj on a lower-priority task τi using Eq. (2) is never smaller than the
interference by task τj on τi using Eq. (1), because α ≥ 0 and hence

⌈

Rk
i

(Tj − α)

⌉

≥
⌈

Rk
i

Tj

⌉

Consequently, if the response-time analysis in Eq. (2) is satisfied for τi, then task τi must meet its
deadline.

If, on the other hand, the response-time analysis in Eq. (2) would indicate failure with α > 0
we cannot draw any conclusions regarding schedulability because the interference may then be
overestimated. Thus, the response-time analysis in Eq. (2) is only a sufficient test for α > 0.

c) We will calculate the response time of each task based on the analysis in Eq. (2), assuming α = 2,
and compare it against the corresponding task deadline.

R1 = C1 = 4 = 4 ≤ T1 = 10 (task τ1 meets its deadline)

Assume that R0
2 = C2 = 5.

R1
2 = C2 + ⌈ R0

2

T1 − 2
⌉ · C1 = 5 + ⌈ 5

10− 2
⌉ · 4 = 5 + 1 · 4 = 9

R2
2 = C2 + ⌈ R1

2

T1 − 2
⌉ · C1 = 5 + ⌈ 9

10− 2
⌉ · 4 = 5 + 2 · 4 = 13

R3
2 = C2 + ⌈ R2

2

T1 − 2
⌉ · C1 = 5 + ⌈ 13

10− 2
⌉ · 4 = 5 + 2 · 4 = 13

Since R3
2 = R2

2 = 13 ≤ T2 = 18,we have R2 = 13 (task τ2 meets its deadline).



Assume that R0
3 = C3 = 4

R1
3 = C3 + ⌈ R0

3

T1 − 2
⌉ · C1 + ⌈ R0

3

T2 − 2
⌉ · C2 = 4 + ⌈ 4

10− 2
⌉ · 4 + ⌈ 4

18− 2
⌉ · 5 = 4 + 1 · 4 + 1 · 5 = 13

R2
3 = C3 + ⌈ R1

3

T1 − 2
⌉ · C1 + ⌈ R1

3

T2 − 2
⌉ · C2 = 4 + ⌈ 13

10− 2
⌉ · 4 + ⌈ 13

18− 2
⌉ · 5 = 4 + 2 · 4 + 1 · 5 = 17

R3
3 = C3 + ⌈ R2

3

T1 − 2
⌉ · C1 + ⌈ R2

3

T2 − 2
⌉ · C2 = 4 + ⌈ 17

10− 2
⌉ · 4 + ⌈ 17

18− 2
⌉ · 5 = 4 + 3 · 4 + 2 · 5 = 26

Since R3
3 = 26 > T2 = 20, task τ2 cannot be guaranteed to meet its deadline.

However, since the response-time analysis in Eq. (2) is only a sufficient test for α = 2, we cannot
conclude anything regarding the schedulability of the task set. The task set is in fact schedulable,
as can be shown by using the exact response-time analysis in Eq. (1), or by using the new response-
time analysis in Eq. (2) assuming α = 1.

PROBLEM 6

We apply processor-demand analysis to determine the maximum value of C1. The hyper-period of the
task set is LCM{10, 20, 40} = 40.

The set of control points are K = {6, 8, 10, 18, 26, 28, 38}.
Consider L = 6.

NL
1 · C1 = (⌊ 6−8

10 ⌋+ 1) · C1 = 0 NL
2 · C2 = (⌊ 6−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 6−10

40 ⌋+ 1) · C3 = 0

CP (0, L) = CP (0, 6) = 0 + 2 + 0 = 2 ≤ L = 6.

Consider L = 8.

NL
1 · C1 = (⌊ 8−8

10 ⌋+ 1) · C1 = C1 NL
2 · C2 = (⌊ 8−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 8−10

40 ⌋+ 1) · C3 = 0

CP (0, L) = CP (0, 8) = C1 + 2 + 0 = C1 + 2.

To satisfy the deadline, we must have CP (0, L) = C1 + 2 ≤ L = 8. Therefore, C1 ≤ 6.

Consider L = 10.

NL
1 · C1 = (⌊ 10−8

10 ⌋+ 1) · C1 = C1 NL
2 · C2 = (⌊ 10−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 10−10

40 ⌋+ 1) · C3 = C3 = 2C1

CP (0, L) = CP (0, 10) = C1 + 2 + 2C1 = 3C1 + 2.

To satisfy the deadline, we must have CP (0, L) = 3C1 + 2 ≤ L = 10. Therefore, C1 ≤ 8/3. Since C1 is
an integer, the value of C1 is upper bounded by ⌊8/3⌋. Consequently, C1 ≤ 2.

Consider L = 18.

NL
1 · C1 = (⌊ 18−8

10 ⌋+ 1) · C1 = 2C1 NL
2 · C2 = (⌊ 18−6

20 ⌋+ 1) · C2 = 2

NL
3 · C3 = (⌊ 18−10

40 ⌋+ 1) · C3 = C3 = 2C1

CP (0, L) = CP (0, 18) = 2C1 + 2 + 2C1 = 4C1 + 2.



To satisfy the deadline, we must have CP (0, L) = 4C1 + 2 ≤ L = 18. Therefore, C1 ≤ 4. Since for the
control point L = 10 we must have C1 ≤ 2, the schedulability for all L = 6, 8, 10, 18 is satisfied if C1 ≤ 2.

Consider L = 26.

NL
1 · C1 = (⌊ 26−8

10 ⌋+ 1) · C1 = 2C1 NL
2 · C2 = (⌊ 26−6

20 ⌋+ 1) · C2 = 4

NL
3 · C3 = (⌊ 26−10

40 ⌋+ 1) · C3 = C3 = 2C1

CP (0, L) = CP (0, 26) = 2C1 + 4 + 2C1 = 4C1 + 4.

To satisfy the deadline, we must have CP (0, L) = 4C1 + 4 ≤ L = 26. Therefore, C1 ≤ 22/4 = 5.5. Since
for the control point L = 10 we must have C1 ≤ 2, the schedulability for all L = 6, 8, 10, 18, 26 is satisfied
if C1 ≤ 2.

Consider L = 28.

NL
1 · C1 = (⌊ 28−8

10 ⌋+ 1) · C1 = 3C1 NL
2 · C2 = (⌊ 28−6

20 ⌋+ 1) · C2 = 4

NL
3 · C3 = (⌊ 28−10

40 ⌋+ 1) · C3 = C3 = 2C1

CP (0, L) = CP (0, 28) = 3C1 + 4 + 2C1 = 5C1 + 4.

To satisfy the deadline, we must have CP (0, L) = 5C1 + 4 ≤ L = 28. Therefore, C1 ≤ 24/5 = 4.8. Since
for the control point L = 10 we must have C1 ≤ 2, the schedulability for all L = 6, 8, 10, 18, 26, 28is
satisfied if C1 ≤ 2.

Consider L = 38.

NL
1 · C1 = (⌊ 38−8

10 ⌋+ 1) · C1 = 4C1 NL
2 · C2 = (⌊ 38−6

20 ⌋+ 1) · C2 = 4

NL
3 · C3 = (⌊ 38−10

40 ⌋+ 1) · C3 = C3 = 2C1

CP (0, L) = CP (0, 38) = 4C1 + 4 + 2C1 = 6C1 + 4.

To satisfy the deadline, we must have CP (0, L) = 6C1+4 ≤ L = 38. Therefore, C1 ≤ 34/6 = 5.66. Since
for the control point L = 10 we must have C1 ≤ 2, the schedulability for all L = 6, 8, 10, 18, 26, 28, 38 is
satisfied if C1 ≤ 2.

The maximum value of C1 is 2.



PROBLEM 7

a) The underlying causes for the weak theoretical framework of global scheduling are:

• Dhall’s effect

– With RM, DM and EDF, some low-utilization task sets can be non-schedulable regardless
of how many processors are used. Thus, any utilization guarantee bound would become
so low that it would be useless in practice.

– This is in contrast to the single-processor case where we have utilization guarantee bounds
of 69.3% (RM) and 100% (EDF).

• Hard-to-find critical instant

– A critical instant does not always occur when a task arrives at the same time as all its
higher-priority tasks.

– Note that this is in contrast to the uniprocessor case.

b) One way to find the smallest number of processors required to schedule the task set is to use schedu-
lability analysis based on processor utilisation. For static-priority scheduling on multiprocessor
systems there are two approaches that offer such analysis, namely RM-US (for global scheduling)
and RMFF (for partitioned scheduling).

The task set has a total utilization Utotal = 4/20 + 5/5 + 12/40 + 3/10 + 20/100 = 2.0.

We will find the smallest number of processors required for RM-US global scheduling based on its
utilization bound m2/(3m− 2). Since Utotal = 2.0, we have

m2/(3m− 2) ≥ 2.0

or, m2 − 6m+ 4 ≥ 0

By solving the quadratic equation m2 − 6m + 4 = 0, we have m = 6±
√
36−16
2 = 3 ±

√
5. Since

the number of processors m ≥ 1, we have 3 +
√
5 = 5.23. Since the number of processors m is an

integer, we need at least 6 processors for the RM-US algorithm.

Next, we will find the smallest number of processors required for RMFF partitioned scheduling
based on its utilization bound m(

√

(2)− 1). Since Utotal = 2.0, we have

m(
√

(2)− 1) ≥ 2.0

or, m ≥ 2.0/(
√

(2)− 1) = 4.82

Since the number of processors m is an integer, we need at least 5 processors for the RM-FF
algorithm.

Therefore, RM-FF partitioned scheduling requires a smaller number of processors.


