
Real-Time Systems — EDA223/DIT161

Final exam, March 12, 2018 at 08:30 – 12:30 in the M building

Examiner:
Professor Jan Jonsson, Department of Computer Science and Engineering

Responsible teacher:
Jan Jonsson, phone: 031–772 5220
Visits the exam at 09:30 and 11:30

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel

Chalmers-approved calculator

Content:
The written exam consists of 6 pages (including cover and hand-in sheet),
containing 7 problems worth a total of 60 points.

Grading policy:
24–35 points ⇒ grade 3 24–43 points ⇒ grade G (GU)
36–47 points ⇒ grade 4
48–60 points ⇒ grade 5 44–60 points ⇒ grade VG (GU)

Results:
When the grading is completed overall result statistics, and a time and location for inspection,
will be announced on the course home page. Individual results will be posted in PingPong
under ’Objectives & Progress’.

Language:
Your solutions should be written in English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If we cannot read your solution, we will assume that it is wrong.

6. A hand-in sheet is available at the end of the exam script. Do not forget to submit it together
with your other solution sheets!

Good Luck!

PROBLEM 1

State whether the following propositions are True or False. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) By priority inversion, we mean a situation where the static priority assigned to a task is inversely
proportional to the period of the task.

b) A systematic time skew in the execution of a task is caused by interference from other tasks with
higher priority.

c) For an NP-complete problem to have pseudo-polynomial time complexity the largest number in the
problem cannot be bounded by the input length (size) of the problem.

d) The GCC cross compiler that is used in the laboratory assignment generates code for the 68HC12
processor core.

e) The RM-US priority-assignment policy has a utilization guarantee bound that converges towards
41% as the number of processors become very large.

f) If a given task set is known to be not schedulable, a necessary feasibility test will always report the
answer “no” when applied to that task set.

PROBLEM 2

The following questions are related to network communication.

a) Describe how message transmission delay is a function of the properties of the message being sent
and the network medium used. (2 points)

b) Describe why the Ethernet protocol is not suitable for use with hard real-time systems. (1 point)

c) Describe the binary countdown algorithm as used in CAN (Controller Area Network). Your answer
should include an example illustrating how the algorithm works with three nodes with unique
message identifiers. (5 points)

PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented
by Shaw in the end of the 1980s.

Assume that the function main (see below) is used as part of a real-time program and that the function,
when called, is allowed to take at most 65 µs to execute.

• Each declaration and assignment statement costs 1 µs to execute.

• A function call costs 2 µs plus WCET for the function in question.

• Each compare and return statement costs 2 µs.

• Each addition and subtraction operation costs 3 µs.

• Each multiply operation costs 5 µs.

• All other language constructs can be assumed to take 0 µs to execute.

int calculateA(int x) {

int temp;

if (x == 0)

temp = 1;

else

if (x == 1)

temp = 1;

else

temp = x * calculateA(x-1);

return temp;

}

int calculateB(int x) {

int temp;

temp = x * calculateA(x) + calculateA(x-1);

return temp;

}

void main() {

int N;

int ans;

N = 2;

ans = calculateB(N);

}

a) Derive WCET for function main by using Shaw’s method and check whether the deadline of the
function (65 µs) will be met or not. (6 points)

b) Derive the maximum cost that the multiply operation can have without causing the deadline of the
main function (65 µs) to be missed. (3 points)

c) Explain why is it preferred that WCET estimates for tasks in a real-time system are pessimistic as
well as tight. (3 points)

PROBLEM 4

With the TinyTimber kernel it is possible to implement periodic activities in a C program. Consider a
real-time system with three independent periodic tasks: T1, T2 and T3, whose execution are controlled
by a cyclic time table with a hyper-period (LCM) of 60 ms. Within each hyper-period the instances of
the tasks are scheduled according to the following:

• Task T1 has a period of 10 ms and an execution time of 6 ms. Its first execution is scheduled
during time interval [0,6), and the subsequent executions at time intervals [10,16), [20,26), [30,36),
[40,46), and [50,56).

• Task T2 has a period of 12 ms and an execution time of 1 ms. Its first execution is scheduled
during time interval [8,9), and the subsequent executions at time intervals [18,19), [28,29), [46,47),
and [58,59).

• Task T3 has a period of 15 ms and an execution time of 2 ms. Its first execution is scheduled during
time interval [6,8), and the subsequent executions at time intervals [26,28), [36,38), and [56,58).

0 10 20 30 40 50 60 t
✲

T3

↑ ↑ ↑ ↑ ↑

T2

↑ ↑ ↑ ↑ ↑ ↑

T1

↑ ↑ ↑ ↑ ↑ ↑ ↑

You should write a TinyTimber program implementing the execution of three methods T1(), T2() and
T3() corresponding to the cyclic time table described above. On a separate sheet at the end of this
exam paper you find a C-code template. Add the missing program code directly on that sheet and
hand it in for grading together with the rest of your solutions. The code for the functions Action6ms(),
Action1ms() and Action2ms() is assumed to already exist. (6 points)

PROBLEM 5

Consider a real-time system with three independent periodic tasks and a run-time system that uses pre-
emptive global scheduling on m = 2 processors. The task priorities are given according to the deadline-
monotonic (DM) priority assignment approach. The table below shows Ci (WCET), Di (deadline) and
Ti (period) for the three tasks. All tasks arrive at time t = 0.

Ci Di Ti

τ1 3 5 6
τ2 6 9 15
τ3 6 7 9

Use a suitable analysis method to determine whether the deadlines are met or not for the three tasks in
the system. (8 points)

PROBLEM 6

Consider a real-time system with four periodic tasks and a run-time system that employs preemptive
single-processor scheduling using the deadline-monotonic (DM) priority-assignment approach. The table
below shows Ci (WCET), Di (deadline) and Ti (period) for the four tasks. All tasks arrive at time t = 0.

Ci Di Ti

τ1 2 6 6
τ2 3 12 16
τ3 3 15 20
τ4 4 28 28

The four tasks are not independent of each other but share three exclusive resources protected by the
binary semaphores Sa, Sb, and Sc. The tasks use the resources in the following way: Task τ1 uses the
resources protected by Sa and Sc. Task τ2 uses the resources protected by Sa and Sb. Task τ3 only uses
the resource protected by Sb. Task τ4 only uses the resource protected by Sc. The table below shows
Hi,j , the maximum time that task τi may lock semaphore Sj during its execution. Note: each resource
use Hi,j is assumed to be included in the normal execution time, Ci.

Hi,a Hi,b Hi,c

τ1 1 - ?
τ2 1 2 -
τ3 - 3 -
τ4 - - ?

As seen in the table above, the values for two of the parameters, H1,c and H4,c, are not specified. Using
response-time analysis, derive the largest integer values for these two parameters for which the task set
is still schedulable. Assume that the Immediate Ceiling Priority Protocol (ICPP) is used for handling
the shared resources. (12 points)

PROBLEM 7

Consider a real-time system with five independent periodic tasks that should be scheduled on m = 2
processors using the rate-monotonic first-fit (RMFF) partitioned scheduling algorithm.

The table below shows Ci (WCET) and Ti (period) for the five tasks. The relative deadline of each
periodic task is equal to its period. All tasks arrive at time t = 0.

Ci Ti

τ1 10 25
τ2 18 40
τ3 2 10
τ4 T4/3 T4

τ5 1 8

a) Show that Oh & Baker’s test for RMFF does not provide enough information to determine if the
tasks can successfully be scheduled on m = 2 processors. (2 points)

b) Determine, by assigning the tasks to the m = 2 processors according to the RMFF algorithm, the
smallest integer value of T4 such that (i) C4 is also an integer and (ii) all the task deadlines are
met. Show the assignment of the tasks to the processors. (6 points)

Hand-in sheet with program code for Problem 4. Anonymous code:

#include "TinyTimber.h"

typedef struct {

Object super;

} PeriodicTask;

Object app = initObject();

PeriodicTask ptask1 = { initObject() };

PeriodicTask ptask2 = { initObject() };

PeriodicTask ptask3 = { initObject() };

void T1(PeriodicTask *self, int u) {

Action6ms(); // procedure doing time-critical work

}

void T2(PeriodicTask *self, int u) {

Action1ms(); // procedure doing time-critical work

}

void T3(PeriodicTask *self, int u) {

Action2ms(); // procedure doing time-critical work

}

void kickoff(Object *self, int u) {

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

