
Real-Time Systems

Solutions to final exam March 12, 2018 (version 20180312)

PROBLEM 1

a) False: Priority inversion occurs when a higher-priority task cannot execute (because another task
holds a resource that the higher-priority task needs) and a lower-priority task is able to execute
instead (thereby invalidating the priority mechanism).

b) False: A systematic time skew in the execution of a periodic task is caused by incorrect methods
(e.g., by using relative delay statements) to calculate the arrival time of the next task instance.
Systematic time skew is eliminated by using baselines and calculating new arrival times in relation
to the current baseline (e.g., using AFTER in TinyTimber or delay until in Ada95).

c) True: Only so-called number problems may possibly have pseudo-polynomial time complexity. The
special property of a number problem is that the largest number in the problem cannot be bounded
by the input length (size) of the problem.

d) False: The GCC cross compiler that is used in the laboratory assignment generates code for the
ARM Cortex-M4 processor core.

e) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of
processors become very large.

f) False: If we know that the task set is not schedulable then a necessary test can either result in
either the outcome ’True’ or the outcome ’False’. This is because a necessary test can result in the
outcome ’True’ even though the task set is not schedulable.

PROBLEM 2

a) The message transmission delay consists of:

Frame delay: tframe = Nframe/R, where Nframe is the message length (in bits) and R is the data
rate (in bits/s).

Propagation delay: tprop = L/v, where L is the communication distance (in m) and v is the
signal propagation velocity (in m/s).

b) Message queuing delay for Ethernet can in general not be bounded because a re-transmission will
happen every time a collision on the communication medium occurs.

c) The binary countdown protocol:

1. Each node with a pending message waits until bus is idle.

2. The node begins transmitting the highest-priority message pending on the node. Identifier is
transmitted first, in the order of most-significant bit to least-significant bit.

3. If a node transmits a recessive bit (1) but sees a dominant bit (0) on the bus, then it stops
transmitting since it is not transmitting the highest-priority message in the system.

4. The node that transmits the last bit of its identifier without detecting a bus inconsistency
has the highest priority and can start transmitting the body of the message.



PROBLEM 3

a) In order to find the WCET of main, we need to find the WCET for the calculateB and calculateA

functions.

The WCET of calculateB(x) is as follows:

WCET (calculateB(x))
= {declare, temp}+ {sub, x− 1}+ {call, calculateA(x− 1)}+WCET (calculateA(x− 1))+
{call, calculateA(x)}+WCET (calculateA(x)) + {multiply, x ∗ calculateA(x)}+
{add, (x ∗ calculateA(x)) + calculateA(x− 1))} + {assign, temp}+ {return, temp}
= 1+ 3 + 2 + 2 + 5 + 3 + 1 + 2 +WCET (calculateA(x)) +WCET (calculateA(x− 1))
= 19 +WCET (calculateA(x)) +WCET (calculateA(x− 1))

The WCET of calculateA(x) is derived based on three cases of the value of parameter x.

Case 1: x = 0:

WCET (calculateA(x = 0))
= {declare, temp}+ {compare, x = 0}+ {assign, temp}+ {return, temp}
= 1 + 2 + 1 + 2 = 6

Case 2: x = 1:

WCET (calculateA(x = 1))
= {declare, temp}+ {compare, x = 0}+ {compare, x = 1}+ {assign, temp}+ {return, temp}
= 1 + 2 + 2 + 1 + 2 = 8

Case 3: x > 1:

WCET (calculateA(x > 1))
= {declare, temp}+ {compare, x = 0}+ {compare, x = 1}+
{sub, x− 1}+ {call, calculateA(x− 1)}+WCET (calculateA(x− 1)) + {multiply, x ∗ calculateA(x− 1)}+
{assign, temp}+ {return, temp}
= 1 + 2 + 2 + 3 + 2 + 5 + 1 + 2 +WCET (calculateA(x− 1))
= 18 +WCET (calculateA(x− 1))

The WCET of the main function is as follows:

WCET (main)
= {declare,N}+ {declare, ans}+ {assign,N}+
{call, calculateB(N)}+WCET (calculateB(N)) + {assign, ans}
= 1 + 1 + 1 + 2 + 1 +WCET (calculateB(N)
= 6 +WCET (calculateB(N))

Therefore, for N = 2, the WCET of main is

WCET (main)
= 6 +WCET (calculateB(2))
= 6 + (19 +WCET (calculateA(2)) +WCET (calculateA(1)))
= 25 +WCET (calculateA(2)) +WCET (calculateA(1))
= 25 + (18 +WCET (calculateA(1))) +WCET (calculateA(1))
= 43 + 2×WCET (calculateA(1))
= 43 + 2× 8
= 43 + 16 = 59µs

Since the deadline of main is 65 µs, the deadline is met.



b) The difference between the deadline and completion time of main, called slack time, is 65-59=6 µs.
There are in total 2 multiply operations: 1 multiply to calculate calculateA(2) and 1 multiply
to calculate x∗calculateA(2) in the calculateB(2) function.

The slack time (6 µs) can be used to increase the cost of the multiply operation. The cost of each
multiply operation can be increased by (slack time/number of multiplies)=6/2=3 µs and the main
program can still meet the deadline. Therefore, the maximum cost of the multiply operation is
(5+3)=8 µs.

c) WCET estimates must be pessimistic to make sure assumptions made in the schedulability analysis of
hard real-time tasks also apply at run time. WCET estimates must be tight to avoid unnecessary
waste of resources during scheduling of hard real-time tasks.



PROBLEM 4

A compact (table-based) solution could look similar to this:

#include "TinyTimber.h"

typedef struct {

Object super;

int Nhyper; // number of executions within hyper period

int table[7]; // baseline offset for next scheduled execution

// index 0: offset for very first execution (relative to time 0)

// index k: offset for execution k+1 (modulo Nhyper)

} PeriodicTask;

Object app = initObject();

PeriodicTask ptask1 = { initObject(), 6, {0,10,10,10,10,10,10} };

PeriodicTask ptask2 = { initObject(), 5, {8,10,10,18,12,10,0} };

PeriodicTask ptask3 = { initObject(), 4, {6,20,10,20,10,0,0} };

void T1(PeriodicTask *self, int u) {

Action6ms(); // procedure doing time-critical work

AFTER(MSEC(self->table[u]), self, T1, (u % self->Nhyper) + 1);

}

void T2(PeriodicTask *self, int u) {

Action1ms(); // procedure doing time-critical work

AFTER(MSEC(self->table[u]), self, T2, (u % self->Nhyper) + 1);

}

void T3(PeriodicTask *self, int u) {

Action2ms(); // procedure doing time-critical work

AFTER(MSEC(self->table[u]), self, T3, (u % self->Nhyper) + 1);

}

void kickoff(Object *self, int u) {

AFTER(MSEC(ptask1.table[0]), &ptask1, T1, 1);

AFTER(MSEC(ptask2.table[0]), &ptask2, T2, 1);

AFTER(MSEC(ptask3.table[0]), &ptask3, T3, 1);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}



PROBLEM 5

There is only one utilization-based feasibility test for global scheduling, namely the one for RM-US.
Since we assume deadline-monotonic scheduling that test cannot be used. We thus need to make a more
detailed schedulability analysis, beginning with response-time analysis for global scheduling.

With deadline-monotonic scheduling the static task priorities are as follows:

prio(τ1) = H, prio(τ2) = L, prio(τ3) = M.

With the given priorities tasks τ1 and τ3 will run undisturbed on one processor each, and are obviously
schedulable since Ci < Di for these tasks. The response time of τ2 is then derived using the following
formula:

R2 = C2 +
1
m ((⌈R2

T1
⌉ · C1 + C1) + (⌈R2

T3
⌉ · C3 + C3)). Assume that R0

2 = C2 = 6:

R1
2 = 6 + 1

2 ((⌈
6
6⌉ · 3 + 3) + (⌈ 6

9⌉ · 6 + 6)) = 6 + 1
2 ((1 · 3 + 3) + (1 · 6 + 6)) = 6 + 1

2 (6 + 12) = 6 + 9 = 15

The derived response-time of τ2 exceeds the deadline D2 (= 9), so the test fails. Since the response-time
test for global scheduling is only sufficient, we cannot yet determine the schedulability of the task set.

Our final option is then hyper period analysis: LCM{T1, T2, T3} = LCM{6, 15, 9} = 90.

We generate a multiprocessor schedule with tasks τ1 and τ3 (having the highest priorities) running on
one processor each. Task τ2 is scheduled in the remaining time slots according to the following diagram
(covering the first half of the hyper period, that is t = 0 to t = 45):

0 10 20 30 40 t

✲

τ1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓

τ2 ↑ ↑ ↑ ↑↓ ↓ ↓

τ3 ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓

µ1

µ2

τ11 τ21 τ31 τ41 τ51 τ61 τ71 τ81

τ13 τ23 τ33 τ43 τ53

τ12

τ12 τ22

τ22

τ32

τ32

We observe that there is a critical instant at t = 30 in the diagram, maximizing the response time of τ2
(R3 = 12). Since R2 > D2 the schedule is not feasible.

Note that t = 0 is not a critical instant (which it would have been for a single-processor system)!

PROBLEM 6

Since deadline-monotonic scheduling is used, the static task priorities are as follows:

prio(τ1) = H, prio(τ2) = MH, prio(τ3) = ML, prio(τ4) = L.

We can now determine the ceiling priority for each semaphore:

ceil{Sa} = max{H,MH} = H (since τ1 och τ2 may lock the semaphore)

ceil{Sb} = max{MH,ML} = MH (since τ2 och τ3 may lock the semaphore)

ceil{Sc} = max{H,L} = H (since τ1 och τ4 may lock the semaphore)

We then identify, for each task τi, what tasks with lower priority may block τi and thereby cause the
corresponding blocking factor Bi:



B1 = max{H2,a, H4,c} = max{1, H4,c} (since τ1 may be blocked by τ2 and τ4 who lock semaphores
whose ceiling priorities are higher than or equal to the priority of τ1)

B2 = max{H3,b, H4,c} = max{3, H4,c} (since τ2 may be blocked by τ3 and τ4 who lock semaphores
whose ceiling priorities are higher than or equal to the priority of τ2)

B3 = max{H4,c} = H4,c (since τ3 may be blocked by τ4 who locks a semaphore whose ceiling priority
is higher than or equal to the priority of τ3)

B4 = 0 (since τ4 has lowest priority of all tasks, and thereby per definition cannot be subject to
blocking)

We can now observe that the time H1,c does not affect the scheduling of the other tasks except through
the execution time of τ1. Since the time for using a resource is included in the normal execution time,
we have H1,c ≤ C1 = 2 (or, to be even more accurate, we have H1,c ≤ C1 −H1,a = 2− 1 = 1).

On the other hand, the time H4,c does affect the schedulability of τ1, τ2 and τ3 since that time is included
in the blocking factors of these tasks. We therefore calculate the task response times and check whether
they are less than or equal to the corresponding deadline:

R1 = C1 +B1 = 2 +H4,c ≤ D1 = 6.

This means that H4,c ≤ D1 − C1 = 4.

R2 = C2 +B2 + ⌈R2

T1

⌉ · C1. Assume that B2 = max{3, H4,c} = 4 and R0
2 = C2 = 3:

R1
2 = 3 + 4 + ⌈ 3

6⌉ · 2 = 3 + 4 + 1 · 2 = 9

R2
2 = 3 + 4 + ⌈ 9

6⌉ · 2 = 3 + 4 + 2 · 2 = 11

R3
2 = 3 + 4 + ⌈ 11

6 ⌉ · 2 = 3 + 4 + 2 · 2 = 11 < D2 = 12.

This means that it still applies that H4,c ≤ 4.

R3 = C3 +B3 + ⌈R3

T1

⌉ · C1 + ⌈R3

T2

⌉ · C2. Assume that B3 = H4,c = 4 and R0
3 = C3 = 3:

R1
3 = 3 + 4 + ⌈ 3

6⌉ · 2 + ⌈ 3
16⌉ · 3 = 3 + 4 + 1 · 2 + 1 · 3 = 12

R2
3 = 3 + 4 + ⌈ 12

6 ⌉ · 2 + ⌈ 12
16⌉ · 3 = 3 + 4 + 2 · 2 + 1 · 3 = 14

R3
3 = 3 + 4 + ⌈ 14

6 ⌉ · 2 + ⌈ 14
16⌉ · 3 = 3 + 4 + 3 · 2 + 1 · 3 = 16 > D3 = 15

This means that our assumption that H4,c = 4 does not hold. Instead, we try H4,c = 3:

R1
3 = 3 + 3 + ⌈ 3

6⌉ · 2 + ⌈ 3
16⌉ · 3 = 3 + 3 + 1 · 2 + 1 · 3 = 11

R2
3 = 3 + 3 + ⌈ 11

6 ⌉ · 2 + ⌈ 11
16⌉ · 3 = 3 + 3 + 2 · 2 + 1 · 3 = 13

R3
3 = 3 + 3 + ⌈ 13

6 ⌉ · 2 + ⌈ 13
16⌉ · 3 = 3 + 3 + 3 · 2 + 1 · 3 = 15

R4
3 = 3 + 3 + ⌈ 15

6 ⌉ · 2 + ⌈ 15
16⌉ · 3 = 3 + 3 + 3 · 2 + 1 · 3 = 15 ≤ D3 = 15

This means that it must apply that H4,c ≤ 3.

R4 = C4 +B4 + ⌈R4

T1

⌉ · C1 + ⌈R4

T2

⌉ · C2 + ⌈R4

T3

⌉ · C3. Assume that R0
4 = C4 = 4:

R1
4 = 4 + ⌈ 4

6⌉ · 2 + ⌈ 4
16⌉ · 3 + ⌈ 4

20⌉ · 3 = 4 + 1 · 2 + 1 · 3 + 1 · 3 = 12

R2
4 = 4 + ⌈ 12

6 ⌉ · 2 + ⌈ 12
16⌉ · 3 + ⌈ 12

20⌉ · 3 = 4 + 2 · 2 + 1 · 3 + 1 · 3 = 14

R3
4 = 4 + ⌈ 14

6 ⌉ · 2 + ⌈ 14
16⌉ · 3 + ⌈ 14

20⌉ · 3 = 4 + 3 · 2 + 1 · 3 + 1 · 3 = 16

R4
4 = 4 + ⌈ 16

6 ⌉ · 2 + ⌈ 16
16⌉ · 3 + ⌈ 16

20⌉ · 3 = 4 + 3 · 2 + 1 · 3 + 1 · 3 = 16 < D4 = 28

The system consequently meets all of its deadlines if H1,c ≤ 1 and H4,c ≤ 3.



PROBLEM 7

We begin by calculating the utilization Ui for each task:

Ci Ti Ui

τ1 10 25 0.4
τ2 18 40 0.45
τ3 2 10 0.2
τ4 T4/3 T4 1/3
τ5 1 8 0.125

a) The Oh & Baker utilization guarantee bound for partitioned scheduling is URMFF = m(21/2 − 1),
where m is the number of processors.

For the given system, with m = 2, we have: URMFF = m · (21/2 − 1) = 2 · (21/2 − 1) ≈ 0.828

The total utilization of the task set is:

UTotal = 0.4 + 0.45 + 0.2 + 1/3 + 0.125 ≈ 1.51

Clearly, UTotal > URMFF which means that the Oh & Baker test fails. However, since the test is
only sufficient we cannot determine the schedulability of the task set.

b) Start by numbering the two processors µ1 and µ2.

According to the RMFF partitioning algorithm the tasks (temporarily excluding task τ4, whose
period is still unknown) should be assigned to the processors in the following order: τ5, τ3, τ1, τ2.

Based on this assignment order, we can see that three tasks can be assigned to processor µ1,
regardless of whether τ4 is among those three or not. The Liu & Layland utilization guarantee
bound for three tasks is URM(3) = n · (21/n − 1) = 3 · (21/3 − 1) ≈ 0.780.

We have two cases, based on the relation between the periods of τ4 and τ1:

Case 1 (T4 < T1): Task τ4 is assigned to µ1. The utilization of the three assigned tasks is then
U = U5 + U3 + U4 = 0.125 + 0.2 + 1/3 ≈ 0.658, which is less than URM(3).

Case 2 (T4 > T1): Task τ4 is not assigned to µ1. The utilization of the three assigned tasks is
then U = U5 + U3 + U1 = 0.125 + 0.2 + 0.4 = 0.725, which is also less than URM(3).

It is not possible to add a fourth task to processor µ1 as the utilization of the assigned tasks would
then exceed the corresponding Liu & Layland utilization guarantee bound. The remaining two
tasks must therefore be assigned to processor µ2. The Liu & Layland utilization guarantee bound
for two tasks is URM(2) = n · (21/n − 1) = 2 · (21/2 − 1) ≈ 0.828.

Again, looking at the two cases:

Case 1: The remaining two tasks to be assigned to µ2 are tasks τ1 and τ2. The utilization of
these tasks is U = U1 + U2 = 0.4 + 0.45 = 0.85, which exceeds URM(2). This is consequently an
infeasible assignment.

Case 2: The remaining two tasks to be assigned to µ2 are tasks τ4 and τ2. The utilization of
these tasks is U = U4 + U2 = 1/3 + 0.45 ≈ 0.783, which is less than URM(2). This is a feasible
assignment.

Based on the reasoning above we saw that the task set can only be successfully scheduled on two
processors if the period of task τ4 is larger than the period of task τ1, that is T4 > T1 = 25. The
smallest integer value of T4 > 25, that also satisfies the additional constraint that C4 = T4/3 must
be an integer, is T4 = 27. Then C4 = 9.

The resulting assignment of tasks to processors is:

Processor µ1: tasks τ5, τ3, and τ1

Processor µ2: tasks τ4 and τ2


