
Introduction to Real-Time Systems

Solutions to final exam May 31, 2017 (version 20170531)

PROBLEM 1

a) False: Priority inversion occurs when a higher-priority task cannot execute (because another task
holds a resource that the higher-priority task needs) and a lower-priority task is able to execute
instead (thereby invalidating the priority mechanism).

b) False: For a sporadic task the time interval between two, subsequent, arrivals is guaranteed to never
be less than a minimum value.

c) False: The response-time test for global fixed-priority scheduling is a sufficient feasibility test since
one extra instance of each higher-priority task must be (pessimistically) accounted for in the
interference analysis.

d) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of
processors become very large.

e) True: TinyTimber’s AFTER() construct allows the programmer to call a method after a delay
relative to the calling method’s baseline, thereby eliminating any systematic time skew.

f) False: If we know that the task set is not schedulable then a necessary test can either result in
either the outcome ’True’ or the outcome ’False’. This is because a necessary test can result in the
outcome ’True’ even though the task set is not schedulable.

PROBLEM 2

a) The four conditions for deadlock is:

• Mutual exclusion – only one task at a time can use a resource

• Hold and wait – there must be tasks that hold one resource at the same time as they request
access to another resource

• No preemption – a resource can only be released by the task holding it

• Circular wait – there must exist a cyclic chain of tasks such that each task holds a resource
that is requested by another task in the chain

b) The basic idea of a priority ceiling protocol is as follows: Each resource is assigned a priority ceiling
equal to the priority of the highest-priority task that can lock it. Then, a task τi is allowed to
enter a critical region only if its priority is higher than all priority ceilings of the resources currently
locked by tasks other than τi. When the τi blocks one or more higher-priority tasks, it temporarily
inherits the highest priority of the blocked tasks.



PROBLEM 3

a) The WCET of Control is dependent on the WCET of function Calc.

WCET of “Calc”:

WCET (Calc(x)) =

{Declare, i}+ {Declare, r}+ {Assign, i}) + {Assign, r} +

(3 + 1) · {Compare, i < 3}+ 3 · ({Multiply, r ∗ x}+ {Assign, r}+ {Add , i + 1}+ {Assign, i}) +

{Subtract , r − 1}+ {Assign, r}+ {Return, r} =

1 + 1 + 1 + 1 + 4 · 2 + 3 · (5 + 1 + 3 + 1) + 3 + 1 + 2 = 4 + 8 + 30 + 6 = 48

WCET of “Control”:

WCET (Control) =

{Declare, c}+ {Declare, r}+ {Assign, c}) +

{Call , Calc(c)}+WCET (Calc(c))+ {Divide,Calc(c)/3 }+ {Assign, r}+ {Compare, r <= 800 } +

max({Shift , r}+ {Assign, r}, {Multiply, 3 ∗ r}+ {Divide, 3 ∗ r/289}) + {Add , 3 ∗ r/289 + 2}) +

{Assign, r}) =

1 + 1 + 1 + 2 +WCET (Calc(c)) + 8 + 1 + 2 +max(2 + 1, 5 + 8 + 3 + 1) + 1 =

17 +max(3, 17) +WCET (Calc(c))

The function Calc(x) calculates the polynomial x4−1 which, with the given input port data range
[−9,+9], has the largest value 94 − 1 = 6560. The comparison in the if-statement in Control

then becomes 6560/3 = 2187 ≤ 800, which is false. Thus, the longer path in the if-statement will
be executed.

WCET (Control) = 17 + max(3, 17) +WCET (Calc(c)) = 17 + 17 + 48 = 82 > 73

The deadline is not met!

b) We notice that, if the shorter path in the if-statement would be executed, we get:

WCET (Control) = 17 + 3 +WCET (Calc(c)) = 17 + 3 + 48 = 68 < 73

Thus, in order to find the largest input port data range for which Control will meet its deadline
we must make sure that the shorter path is always taken. This happens when Calc(c)/3 ≤ 800,
that is, when Calc(c) ≤ 2400. Since Calc(x) calculates the polynom x4 − 1 the largest permitted
data range is [−7,+7], since 74 − 1 = 2400.

c) The new function Calc(x) is functionally compatible with the old function since (x2−1)((x2−1)+2) =
(x2 − 1)(x2 + 1) = x4 − 1. However, the WCET of the new function is significantly smaller:

WCET (Calc(x)) =

{Declare, r}+ {Multiply, x ∗ x}+ {Subtract , x ∗ x − 1}+ {Assign, r} +

{Add , r + 2}+ {Multiply, r ∗ (r + 2 )}+ {Assign, r} + {Return, r} =

1 + 5 + 3 + 1 + 3 + 5 + 1 + 2 = 21

With the original input port data range [−9,+9] we get:

WCET (Control) = 17 + max(3, 17) +WCET (Calc(c)) = 17 + 17 + 21 = 55 < 73

The deadline is met!



PROBLEM 4

a) A compact solution could look similar to this:

#include TinyTimber.h

typedef struct {

Object super;

char *id;

} PeriodicTask;

Object app = initObject();

PeriodicTask ptask1 = { initObject(), "Task 1" };

PeriodicTask ptask2 = { initObject(), "Task 2" };

void T1(PeriodicTask *self, int u) {

Action1(); // procedure doing time-critical work

SEND(MSEC(95), MSEC(40), self, T1, 0);

}

void T2(PeriodicTask *self, int u) {

Action2(); // procedure doing time-critical work

SEND(MSEC(160), MSEC(85), self, T2, 0);

}

void kickoff(PeriodicTask *self, int u) {

SEND(MSEC(0), MSEC(40), &ptask1, T1, 0);

SEND(MSEC(70), MSEC(85), &ptask2, T2, 0);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

b) The priorities for scheduled activities are given by the deadlines in SEND() or BEFORE() calls, since
the TinyTimber kernel uses earliest-deadline-first scheduling.

c) If shared data is stored within an object, TinyTimber guarantees that mutual exclusion applies for
the methods defined with the object if called with SYNC or ASYNC.

d) TinyTimber uses the Deadline Inheritance Protocol, combined with deadlock detection via the return
value of the SYNC call.



PROBLEM 5

a) RM uses static task priorities that are assigned according to the following rule: tasks with shorter
periods (= higher rate) get higher priority.

b) RM is an optimal priority assignment for preemptive scheduling on one processor if (i) priorities are
static and (ii) deadline equals period for all tasks.

c) If the exact values of the task periods are not known, we only have access to the individual task
utilizations. It may then seem natural to try to apply Liu & Layland’s sufficient utilization-based
test. Unfortunately, the test’s utilization bound for two tasks (≈ 83%) is significantly lower than
the actual utilization of the tasks (= 100%), which means that the test does not tell us anything
regarding schedulability. Neither can we apply any type of detailed analysis within a hyper-period
since we do know know which task has the highest priority. And even if we make the assumption
that τ1 has the highest priority (and thereby meets all of its deadlines), we still cannot answer our
question because C1/T1+C2/T2 = 1 → T2C1 +T1C2 = T1T2 → T2 = T2/T1C1 +C2. Here, we can
see that, in order to decide whether τ2 is schedulable or not, we must know how many instances
of τ1 that interferes with the execution of τ2 within T2. If T2/T1 is not an integer number there is
a risk that task τ2 misses a deadline (e.g. for T2 = 10 and T1 = 4).

d) With the new information that T2 = 2T1, it is now possible to decide schedulability. First, we
now know with certainty that task τ1 has highest priority according to RM and thereby meets its
deadlines. In addition, we know from sub-problem (c) that T2 = T2/T1C1 +C2. Therefore, we can
conclude that T2 = 2C1 +C2. That is, we now know that, within T2, there is room for exactly two
instances of task τ1 and one instance of task τ2. It is then clear that it is possible to do an analysis
within one hyper-period (= T2) since the system is not overloaded, and the behavior of the tasks
will be repeated for each new hyper-period. And, since we already know that T2 = T2/T1C1 +C2,
we also know that task τ2 will be able to execute C2 time units within its period. The system is
consequently schedulable.



PROBLEM 6

a) The Liu & Layland utilization-based test for EDF cannot be used since it does not apply to all tasks
that Di = Ti.

b) Perform processor-demand analysis:

First, determine LCM of the task periods: LCM{T1, T2, T3} = LCM{4, 10, 20} = 20.

Then, derive the set K of control points: K1 = {4, 8, 12, 16, 20}, K2 = {4, 14} and K3 = {15}
which gives us K = K1 ∪K2 ∪K3 = {4, 8, 12, 14, 15, 16, 20}.

Schedulability analysis now gives us:

L NL

1 · C1 NL

2 · C2 NL

3 · C3 CP (0, L) CP (0, L) ≤ L

4 (⌊ (4−4)
4

⌋+ 1) · 3 = 3 (⌊ (4−4)
10

⌋+ 1) · 1 = 1 (⌊ (4−15)
20

⌋+ 1) · 3 = 0 4 OK

8 (⌊ (8−4)
4

⌋+ 1) · 3 = 6 (⌊ (8−4)
10

⌋+ 1) · 1 = 1 (⌊ (8−15)
20

⌋+ 1) · 3 = 0 7 OK

12 (⌊ (12−4)
4

⌋+ 1) · 3 = 9 (⌊ (12−4)
10

⌋ + 1) · 1 = 1 (⌊ (12−15)
20

⌋+ 1) · 3 = 0 10 OK

14 (⌊ (14−4)
4

⌋+ 1) · 3 = 9 (⌊ (14−4)
10

⌋ + 1) · 1 = 2 (⌊ (14−15)
20

⌋+ 1) · 3 = 0 11 OK

15 (⌊ (15−4)
4

⌋+ 1) · 3 = 9 (⌊ (15−4)
10

⌋ + 1) · 1 = 2 (⌊ (15−15)
20

⌋+ 1) · 3 = 3 14 OK

16 (⌊ (16−4)
4

⌋+ 1) · 3 = 12 (⌊ (16−4)
10

⌋ + 1) · 1 = 2 (⌊ (16−15)
20

⌋+ 1) · 3 = 3 17 Not OK!

20 (⌊ (20−4)
4

⌋+ 1) · 3 = 15 (⌊ (20−4)
10

⌋ + 1) · 1 = 2 (⌊ (20−15)
20

⌋+ 1) · 3 = 3 20 OK

The processor demand in one of the strategic time intervals (L = 16) exceeds the length of that
interval, so not all tasks will meet their deadlines.

c) From sub-problem b): LCM{4, 10, 20} = 20.

A simulation of the tasks using EDF scheduling in the interval [0,LCM ] gives the following timing
diagram. Here, we see that task τ1 misses its deadline at time t = 16.

0 10 20 t

✲

τ3
↑ ↑↓

τ2
↑ ↑ ↑↓ ↓

τ1
↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓

τ11 τ21 τ31 τ41 τ51

τ13 τ13

τ12 τ22



PROBLEM 7

We begin by calculating the utilization Ui for each task:

Ci Ti Ui

τ1 10 25 0.4
τ2 18 40 0.45
τ3 2 10 0.2
τ4 T4/3 T4 1/3
τ5 1 8 0.125

a) The Oh & Baker utilization guarantee bound for partitioned scheduling is URMFF = m(21/2 − 1),
where m is the number of processors.

For the given system, with m = 2, we have: URMFF = m · (21/2 − 1) = 2 · (21/2 − 1) ≈ 0.828

The total utilization of the task set is:

UTotal = 0.4 + 0.45 + 0.2 + 1/3 + 0.125 ≈ 1.51

Clearly, UTotal > URMFF which means that the Oh & Baker test fails. However, since the test is
only sufficient we cannot determine the schedulability of the task set.

b) Start by numbering the two processors µ1 and µ2.

According to the RMFF partitioning algorithm the tasks (temporarily excluding task τ4, whose
period is still unknown) should be assigned to the processors in the following order: τ5, τ3, τ1, τ2.

Based on this assignment order, we can see that three tasks can be assigned to processor µ1,
regardless of whether τ4 is among those three or not. The Liu & Layland utilization guarantee
bound for three tasks is URM(3) = n · (21/n − 1) = 3 · (21/3 − 1) ≈ 0.780.

We have two cases, based on the relation between the periods of τ4 and τ1:

Case 1 (T4 < T1): Task τ4 is assigned to µ1. The utilization of the three assigned tasks is then
U = U5 + U3 + U4 = 0.125 + 0.2 + 1/3 ≈ 0.658, which is less than URM(3).

Case 2 (T4 > T1): Task τ4 is not assigned to µ1. The utilization of the three assigned tasks is
then U = U5 + U3 + U1 = 0.125 + 0.2 + 0.4 = 0.725, which is also less than URM(3).

It is not possible to add a fourth task to processor µ1 as the utilization of the assigned tasks would
then exceed the corresponding Liu & Layland utilization guarantee bound. The remaining two
tasks must therefore be assigned to processor µ2. The Liu & Layland utilization guarantee bound
for two tasks is URM(2) = n · (21/n − 1) = 2 · (21/2 − 1) ≈ 0.828.

Again, looking at the two cases:

Case 1: The remaining two tasks to be assigned to µ2 are tasks τ1 and τ2. The utilization of
these tasks is U = U1 + U2 = 0.4 + 0.45 = 0.85, which exceeds URM(2). This is consequently an
infeasible assignment.

Case 2: The remaining two tasks to be assigned to µ2 are tasks τ4 and τ2. The utilization of
these tasks is U = U4 + U2 = 1/3 + 0.45 ≈ 0.783, which is less than URM(2). This is a feasible
assignment.

Based on the reasoning above we saw that the task set can only be successfully scheduled on two
processors if the period of task τ4 is larger than the period of task τ1, that is T4 > T1 = 25. The
smallest integer value of T4 > 25, that also satisfies the additional constraint that C4 = T4/3 must
be an integer, is T4 = 27. Then C4 = 9.

The resulting assignment of tasks to processors is:

Processor µ1: tasks τ5, τ3, and τ1

Processor µ2: tasks τ4 and τ2


