Introduction to Real-Time Systems

Solutions to final exam May 31, 2017 (version 20170531)

PROBLEM 1

- a) FALSE: Priority inversion occurs when a higher-priority task cannot execute (because another task holds a resource that the higher-priority task needs) and a lower-priority task is able to execute instead (thereby invalidating the priority mechanism).
- b) False: For a sporadic task the time interval between two, subsequent, arrivals is guaranteed to never be less than a minimum value.
- c) FALSE: The response-time test for global fixed-priority scheduling is a sufficient feasibility test since one extra instance of each higher-priority task must be (pessimistically) accounted for in the interference analysis.
- d) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of processors become very large.
- e) True: TinyTimber's AFTER() construct allows the programmer to call a method after a delay relative to the calling method's baseline, thereby eliminating any systematic time skew.
- f) FALSE: If we know that the task set is not schedulable then a necessary test can either result in either the outcome 'True' or the outcome 'False'. This is because a necessary test can result in the outcome 'True' even though the task set is not schedulable.

PROBLEM 2

- a) The four conditions for deadlock is:
 - Mutual exclusion only one task at a time can use a resource
 - Hold and wait there must be tasks that hold one resource at the same time as they request access to another resource
 - No preemption a resource can only be released by the task holding it
 - Circular wait there must exist a cyclic chain of tasks such that each task holds a resource that is requested by another task in the chain
- b) The basic idea of a priority ceiling protocol is as follows: Each resource is assigned a priority ceiling equal to the priority of the highest-priority task that can lock it. Then, a task τ_i is allowed to enter a critical region only if its priority is higher than all priority ceilings of the resources currently locked by tasks other than τ_i . When the τ_i blocks one or more higher-priority tasks, it temporarily inherits the highest priority of the blocked tasks.

a) The WCET of Control is dependent on the WCET of function Calc.

WCET of "Calc":

```
\begin{split} WCET(Calc(x)) &= \\ \{Declare, i\} + \{Declare, r\} + \{Assign, i\}) + \{Assign, r\} + \\ (3+1) \cdot \{Compare, i < 3\} + 3 \cdot (\{Multiply, r * x\} + \{Assign, r\} + \{Add, i+1\} + \{Assign, i\}) + \\ \{Subtract, r-1\} + \{Assign, r\} + \{Return, r\} = \\ 1+1+1+1+4\cdot 2 + 3\cdot (5+1+3+1) + 3+1+2 = 4+8+30+6 = 48 \end{split}
```

WCET of "Control":

```
WCET(Control) =
```

 $\{Declare, c\} + \{Declare, r\} + \{Assign, c\} + \{Declare, r\} + \{Decl$

 $\begin{aligned} & \{\mathit{Call}, \mathit{Calc}(c)\} + \mathit{WCET}(\mathit{Calc}(c)) + \{\mathit{Divide}, \mathit{Calc}(c)/3\} + \{\mathit{Assign}, r\} + \{\mathit{Compare}, r <= 800\} + \max(\{\mathit{Shift}, r\} + \{\mathit{Assign}, r\}, \{\mathit{Multiply}, \textit{3} * r\} + \{\mathit{Divide}, \textit{3} * r/289\}) + \{\mathit{Add}, \textit{3} * r/289 + 2\}) + \{\mathit{Assign}, r\}) \\ & = \{\mathit{Assign}, r\}) \end{aligned}$

$$1 + 1 + 1 + 2 + WCET(Calc(c)) + 8 + 1 + 2 + \max(2 + 1, 5 + 8 + 3 + 1) + 1 = 17 + \max(3, 17) + WCET(Calc(c))$$

The function Calc(x) calculates the polynomial x^4-1 which, with the given input port data range [-9,+9], has the largest value $9^4-1=6560$. The comparison in the if-statement in Control then becomes $6560/3=2187\leq 800$, which is false. Thus, the longer path in the if-statement will be executed.

$$WCET(Control) = 17 + \max(3, 17) + WCET(Calc(c)) = 17 + 17 + 48 = 82 > 73$$

The deadline is not met!

b) We notice that, if the shorter path in the if-statement would be executed, we get:

$$WCET(Control) = 17 + 3 + WCET(Calc(c)) = 17 + 3 + 48 = 68 < 73$$

Thus, in order to find the largest input port data range for which Control will meet its deadline we must make sure that the shorter path is always taken. This happens when $Calc(c)/3 \le 800$, that is, when $Calc(c) \le 2400$. Since Calc(x) calculates the polynom $x^4 - 1$ the largest permitted data range is [-7, +7], since $7^4 - 1 = 2400$.

c) The new function Calc(x) is functionally compatible with the old function since $(x^2-1)((x^2-1)+2) = (x^2-1)(x^2+1) = x^4-1$. However, the WCET of the new function is significantly smaller:

$$\begin{split} WCET(Calc(x)) &= \\ \{Declare, r\} + \{Multiply, x*x\} + \{Subtract, x*x-1\} + \{Assign, r\} + \\ \{Add, r+2\} + \{Multiply, r*(r+2)\} + \{Assign, r\} + \{Return, r\} = \\ 1+5+3+1+3+5+1+2 &= 21 \end{split}$$

With the original input port data range [-9, +9] we get:

$$WCET(Control) = 17 + \max(3, 17) + WCET(Calc(c)) = 17 + 17 + 21 = 55 < 73$$

The deadline is met!

a) A compact solution could look similar to this:

```
#include TinyTimber.h
typedef struct {
    Object super;
    char *id;
} PeriodicTask;
Object app = initObject();
PeriodicTask ptask1 = { initObject(), "Task 1" };
PeriodicTask ptask2 = { initObject(), "Task 2" };
void T1(PeriodicTask *self, int u) {
    Action1(); // procedure doing time-critical work
   SEND(MSEC(95), MSEC(40), self, T1, 0);
}
void T2(PeriodicTask *self, int u) {
   Action2(); // procedure doing time-critical work
    SEND(MSEC(160), MSEC(85), self, T2, 0);
}
void kickoff(PeriodicTask *self, int u) {
    SEND(MSEC(0), MSEC(40), &ptask1, T1, 0);
    SEND(MSEC(70), MSEC(85), &ptask2, T2, 0);
}
main() {
   return TINYTIMBER(&app, kickoff, 0);
```

- b) The priorities for scheduled activities are given by the deadlines in SEND() or BEFORE() calls, since the TinyTimber kernel uses earliest-deadline-first scheduling.
- c) If shared data is stored within an object, TinyTimber guarantees that mutual exclusion applies for the methods defined with the object if called with SYNC or ASYNC.
- d) TinyTimber uses the Deadline Inheritance Protocol, combined with deadlock detection via the return value of the SYNC call.

- a) RM uses static task priorities that are assigned according to the following rule: tasks with shorter periods (= higher rate) get higher priority.
- b) RM is an optimal priority assignment for preemptive scheduling on one processor if (i) priorities are static and (ii) deadline equals period for all tasks.
- c) If the exact values of the task periods are not known, we only have access to the individual task utilizations. It may then seem natural to try to apply Liu & Layland's sufficient utilization-based test. Unfortunately, the test's utilization bound for two tasks ($\approx 83\%$) is significantly lower than the actual utilization of the tasks (= 100%), which means that the test does not tell us anything regarding schedulability. Neither can we apply any type of detailed analysis within a hyper-period since we do know know which task has the highest priority. And even if we make the assumption that τ_1 has the highest priority (and thereby meets all of its deadlines), we still cannot answer our question because $C_1/T_1 + C_2/T_2 = 1 \rightarrow T_2C_1 + T_1C_2 = T_1T_2 \rightarrow T_2 = T_2/T_1C_1 + C_2$. Here, we can see that, in order to decide whether τ_2 is schedulable or not, we must know how many instances of τ_1 that interferes with the execution of τ_2 within T_2 . If T_2/T_1 is not an integer number there is a risk that task τ_2 misses a deadline (e.g. for $T_2 = 10$ and $T_1 = 4$).
- d) With the new information that $T_2 = 2T_1$, it is now possible to decide schedulability. First, we now know with certainty that task τ_1 has highest priority according to RM and thereby meets its deadlines. In addition, we know from sub-problem (c) that $T_2 = T_2/T_1C_1 + C_2$. Therefore, we can conclude that $T_2 = 2C_1 + C_2$. That is, we now know that, within T_2 , there is room for exactly two instances of task τ_1 and one instance of task τ_2 . It is then clear that it is possible to do an analysis within one hyper-period (= T_2) since the system is not overloaded, and the behavior of the tasks will be repeated for each new hyper-period. And, since we already know that $T_2 = T_2/T_1C_1 + C_2$, we also know that task τ_2 will be able to execute C_2 time units within its period. The system is consequently schedulable.

- a) The Liu & Layland utilization-based test for EDF cannot be used since it does not apply to all tasks that $D_i = T_i$.
- b) Perform processor-demand analysis:

First, determine LCM of the task periods: $LCM\{T_1, T_2, T_3\} = LCM\{4, 10, 20\} = 20$.

Then, derive the set K of control points: $K_1 = \{4, 8, 12, 16, 20\}$, $K_2 = \{4, 14\}$ and $K_3 = \{15\}$ which gives us $K = K_1 \cup K_2 \cup K_3 = \{4, 8, 12, 14, 15, 16, 20\}$.

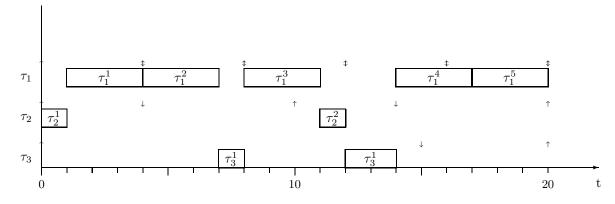
Schedulability analysis now gives us:

L	$N_1^L \cdot C_1$	$N_2^L \cdot C_2$	$N_3^L \cdot C_3$	$C_P(0,L)$	$C_P(0,L) \le L$
4	$\left(\left\lfloor \frac{(4-4)}{4} \right\rfloor + 1\right) \cdot 3 = 3$	$\left(\left\lfloor \frac{(4-4)}{10} \right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{(4-15)}{20} \right\rfloor + 1\right) \cdot 3 = 0$	4	OK
8	$\left(\left\lfloor \frac{(8-4)}{4} \right\rfloor + 1\right) \cdot 3 = 6$	$\left(\left\lfloor \frac{(8-4)}{10} \right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{(8-15)}{20} \right\rfloor + 1\right) \cdot 3 = 0$	7	OK
12	$\left(\left\lfloor \frac{(12-4)}{4} \right\rfloor + 1\right) \cdot 3 = 9$	$\left(\left\lfloor \frac{(12-4)}{10}\right\rfloor + 1\right) \cdot 1 = 1$	$\left(\left\lfloor \frac{(12-15)}{20}\right\rfloor + 1\right) \cdot 3 = 0$	10	OK
14	$\left(\left\lfloor \frac{(14-4)}{4} \right\rfloor + 1\right) \cdot 3 = 9$	$\left(\left\lfloor \frac{(14-4)}{10} \right\rfloor + 1\right) \cdot 1 = 2$	$\left(\left\lfloor \frac{(14-15)}{20}\right\rfloor + 1\right) \cdot 3 = 0$	11	OK
15	$\left(\left\lfloor \frac{(15-4)}{4} \right\rfloor + 1\right) \cdot 3 = 9$	$\left(\left\lfloor \frac{(15-4)}{10}\right\rfloor + 1\right) \cdot 1 = 2$	$\left(\left\lfloor \frac{(15-15)}{20} \right\rfloor + 1\right) \cdot 3 = 3$	14	OK
16	$\left(\left\lfloor \frac{(16-4)}{4} \right\rfloor + 1\right) \cdot 3 = 12$	$\left(\left\lfloor \frac{(16-4)}{10} \right\rfloor + 1\right) \cdot 1 = 2$	$\left(\left\lfloor \frac{(16-15)}{20} \right\rfloor + 1\right) \cdot 3 = 3$	17	Not OK!
20	$\left(\left\lfloor \frac{(20-4)}{4} \right\rfloor + 1\right) \cdot 3 = 15$	$\left(\left\lfloor \frac{(20-4)}{10} \right\rfloor + 1\right) \cdot 1 = 2$	$\left(\left\lfloor \frac{(20-15)}{20} \right\rfloor + 1\right) \cdot 3 = 3$	20	OK

The processor demand in one of the strategic time intervals (L = 16) exceeds the length of that interval, so not all tasks will meet their deadlines.

c) From sub-problem b): $LCM\{4, 10, 20\} = 20$.

A simulation of the tasks using EDF scheduling in the interval [0, LCM] gives the following timing diagram. Here, we see that task τ_1 misses its deadline at time t = 16.



We begin by calculating the utilization U_i for each task:

	C_i	T_i	U_i
$ au_1$	10	25	0.4
τ_2	18	40	0.45
$ au_3$	2	10	0.2
$ au_4$	$T_4/3$	T_4	1/3
$ au_5$	1	8	0.125

a) The Oh & Baker utilization guarantee bound for partitioned scheduling is $U_{RMFF} = m(2^{1/2} - 1)$, where m is the number of processors.

For the given system, with m=2, we have: $U_{\rm RMFF}=m\cdot(2^{1/2}-1)=2\cdot(2^{1/2}-1)\approx0.828$

The total utilization of the task set is:

 $U_{Total} = 0.4 + 0.45 + 0.2 + 1/3 + 0.125 \approx 1.51$

Clearly, $U_{Total} > U_{RMFF}$ which means that the Oh & Baker test fails. However, since the test is only sufficient we cannot determine the schedulability of the task set.

b) Start by numbering the two processors μ_1 and μ_2 .

According to the RMFF partitioning algorithm the tasks (temporarily excluding task τ_4 , whose period is still unknown) should be assigned to the processors in the following order: $\tau_5, \tau_3, \tau_1, \tau_2$.

Based on this assignment order, we can see that three tasks can be assigned to processor μ_1 , regardless of whether τ_4 is among those three or not. The Liu & Layland utilization guarantee bound for three tasks is $U_{RM(3)} = n \cdot (2^{1/n} - 1) = 3 \cdot (2^{1/3} - 1) \approx 0.780$.

We have two cases, based on the relation between the periods of τ_4 and τ_1 :

Case 1 ($T_4 < T_1$): Task τ_4 is assigned to μ_1 . The utilization of the three assigned tasks is then $U = U_5 + U_3 + U_4 = 0.125 + 0.2 + 1/3 \approx 0.658$, which is less than $U_{RM(3)}$.

Case 2 ($T_4 > T_1$): Task τ_4 is not assigned to μ_1 . The utilization of the three assigned tasks is then $U = U_5 + U_3 + U_1 = 0.125 + 0.2 + 0.4 = 0.725$, which is also less than $U_{RM(3)}$.

It is not possible to add a fourth task to processor μ_1 as the utilization of the assigned tasks would then exceed the corresponding Liu & Layland utilization guarantee bound. The remaining two tasks must therefore be assigned to processor μ_2 . The Liu & Layland utilization guarantee bound for two tasks is $U_{RM(2)} = n \cdot (2^{1/n} - 1) = 2 \cdot (2^{1/2} - 1) \approx 0.828$.

Again, looking at the two cases:

Case 1: The remaining two tasks to be assigned to μ_2 are tasks τ_1 and τ_2 . The utilization of these tasks is $U = U_1 + U_2 = 0.4 + 0.45 = 0.85$, which exceeds $U_{RM(2)}$. This is consequently an infeasible assignment.

Case 2: The remaining two tasks to be assigned to μ_2 are tasks τ_4 and τ_2 . The utilization of these tasks is $U = U_4 + U_2 = 1/3 + 0.45 \approx 0.783$, which is less than $U_{RM(2)}$. This is a feasible assignment.

Based on the reasoning above we saw that the task set can only be successfully scheduled on two processors if the period of task τ_4 is larger than the period of task τ_1 , that is $T_4 > T_1 = 25$. The smallest integer value of $T_4 > 25$, that also satisfies the additional constraint that $C_4 = T_4/3$ must be an integer, is $T_4 = 27$. Then $T_4 = 27$. Then $T_4 = 27$.

The resulting assignment of tasks to processors is:

Processor μ_1 : tasks τ_5, τ_3 , and τ_1

Processor μ_2 : tasks τ_4 and τ_2