
Real-Time Systems

Solutions to final exam March 14, 2016 (version 20180520)

PROBLEM 1

a) True: TinyTimber allows multiple methods to execute concurrently, given that each method reside
is a separate object.

b) False: The behavior of a data cache is in general much more difficult to predict.

c) False: The response-time test for global fixed-priority scheduling is only a sufficient test.

d) False: By deadline inversion me mean a situation in EDF scheduling where an urgent task is being
blocked by a less urgent task (due to e.g. sharing the same resource) that has a deadline later in
time.

e) True: ICPP cannot cause deadlock if all task use the protocol to access shared resources.

f) True: For a sufficient feasibility test a positive answer guarantees that the task set is schedulable.
Therefore, if the task set is not schedulable the answer from the test must have been a “no”.

PROBLEM 2

a) CAN is contention-based (collision-based).

b) See lecture notes for Lecture 7 (slide 31).

c) See lecture notes for Lecture 7 (slide 32).

PROBLEM 3

a) The WCET of main is dependent on the WCET of functions “FuncA” and “FuncB”.

WCET of “main”:

WCET (main) = {Dec, a}+ {Dec, b}+ {Dec, c}+ {Dec, d}+ {Dec, e}+ {Dec, result}
+ {Dec, threshold}+ {Assign, threshold = 100}+ {Assign, result = −1}+ {Assign, a = 3}
+ {Assign, b = 4}+ {abs, abs(a)}+ {abs, abs(b)}+ {call, FuncA(abs(b), abs(a))}
+WCET (FuncA(abs(4), abs(3))) + {Assign, c = FuncA(abs(b), abs(a))}+ {comp, c > threshold}
+ {abs, abs(a)}+ {abs, abs(b)}+ {call, FuncA(abs(a), abs(b))}+WCET (FuncA(abs(3), abs(4)))

+ {Assign, d = FuncA(abs(a), abs(b))}+ {comp, d > threshold}+ {add, c+ d}+ {Assgn, e = c+ d}
+ {comp, e > threshold}+ {call, FuncB(e)}+ {Assign, result = FuncB(e)}+WCET (FuncB(3))

= 50 +WCET (FuncA(4, 3)) +WCET (FuncA(3, 4)) +WCET (FuncB(145))



WCET of “FuncA”: There are three cases for calculating the WCET of FuncA:

Case(i)y == 0, Case(ii)y = 1, Case(iii)y > 1.

Case(i)WCET (FuncA(x, y)) = {Dec, z}+ {Assign, z = 0}+ {Comp, y == 0}+ {Assign, z = 1}
+ {return, z} = 7

Case(ii)WCET (FuncA(x, y)) = {Dec, z}+ {Assign, z = 0}+ {Comp, y == 0}+ {Comp, y == 1}
{Assign, z = x}+ {return, z} = 9

Case(iii)WCET (FuncA(x, y)) = {Dec, z}+ {Assign, z = 0}+ {Comp, y == 0}+ {Comp, y == 1}
+ {sub, y − 1}+ {call, FuncA(x, y− 1)}+WCET (FuncA(x, y − 1)) + {mul, x ∗ FuncA(x, y − 1)}
+ {Assign, z = x ∗ FuncA(x, y − 1)}+ {return, z} = 18 +WCET (FuncA(x, y − 1))

WCET (FuncA(4, 3)) = 18 +WCET (FuncA(4, 2)) = 18 + 18 +WCET (FuncA(4, 1)) =

18 + 18 + 9 = 45

WCET (FuncA(3, 4)) = 18 +WCET (FuncA(3, 3)) = 18 + 18 +WCET (FuncA(3, 2)) =

18 + 18 + 18 +WCET (FuncA(3, 1)) = 18 + 18 + 18 + 9 = 63

WCET of “FuncB”:

WCET (FuncB(x)) = {Dec, y}+ {Assign, y = x}+ {mod, y%3}+ {Comp, (y%3)! = 0}
{mod, y%3}+ {mod, ((y%3)%2)}+ {Comp, ((y%3)%2)}+ {sub, y − 1}+ {return, y − 1}
= WCET (FuncB(145)) = 26

WCET of “main”:

WCET (main) = 50 + 45 + 63 + 26 = 184

The deadline is met

b) There are seven addition/subtraction operations. The cost of each of them cannot be more than 4
µs so that the deadline is met.

c) The WCET estimates should be pessimistic to make sure assumptions made in the schedulability
analysis of hard real-time tasks also apply at run time. The estimates should be tight to avoid
unnecessary waste of resources during scheduling of hard real-time tasks.



PROBLEM 4

a) The tasks T1, T2 and T3 should normally reside in three separate objects, but since their execution
is precedence-constrained a solution where they share one object (A) is also correct. Task BG
needs to reside in an object that is separate (object B) from the hard-real-time tasks.

void T1(TaskObj *self, int u) {

Action300(); // Do work for 300 microseconds

BEFORE(USEC(1200), self, T2, 0); // Keep current baseline

}

void T2(TaskObj *self, int u) {

Action800(); // Do work for 800 microseconds

BEFORE(USEC(2100), self, T3, 0); // Keep current baseline

}

void T3(TaskObj *self, int u) {

Action500(); // Do work for 500 microseconds

SEND(USEC(2400), USEC(1600), self, T1, 0);

}

void BG(TaskObj *self, int u) {

Load700(); // Do background work for 700 microseconds

SEND(USEC(1800), USEC(1800), self, BG, 0);

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(1600), &A, T1, 0);

BEFORE(USEC(1800), &B, BG, 0);

}

main() {

return TINYTIMBER(&A, kickoff, 0);

}

b) By simulating the execution of the tasks, assuming an EDF scheduler, we can see that task T3 will
miss its deadline at t=21 (having two more time units to execute). Conclusion: It is not possible
to guarantee that task T3 will meet its deadline.



PROBLEM 5

We start by observing that task τ1 has a first arrival time that differs from that of the other tasks. This
means that the use of a utilization-based or response-time-based schedulability test may become overly
pessimistic IF there exists no point in time in the schedule where all tasks arrive at the same time. This,
in turn, could mean that, should the test fail, the task set could potentially still be schedulable.

Luckily, by observing the given periods and offsets, we can see that there does indeed exist a point in
time where all tasks arrive at the same time, namely at t = 3T (where the arrivals of the 4th instance
of τ1, the 4th instance of τ2 and the 3rd instance of τ3 coincide). We can then use this as the critical
instant in our analysis.

Our first candidate method for schedulability analysis is Liu and Layland’s classic utilization-based test.
For three tasks, the schedulability bound is Ulub = 3(21/3− 1) ≈ 0.780. Unfortunately, the accumulated
task utilization, U = 1/4 + 9/20 + 2/15 ≈ 0.833, exceeds the guarantee bound, and the test does not
provide any useful information.

We must, consequently, resort to response-time analysis. Since RM is used, the task priorities are
determined by the task periods. To that end, task τ1 has highest priority (shortest period) and task τ3
has lowest priority.

First, we derive the execution time of each task:

C1 = U1 · T1 = 1/4 · 0.8T = 0.2T

C2 = U2 · T2 = 9/20 · T = 0.45T

C3 = U3 · T3 = 2/15 · 1.5T = 0.2T

We then calculate the response time of each task and compare it against the corresponding task deadline:

R1 = C1 = 0.2T < D1 = 0.8T .

R2 = C2 + ⌈R2

T1

⌉ · C1. Assume that R0

2
= C2 = 0.45T :

R1
2 = 0.45T + ⌈ 0.45T

0.8T ⌉ · 0.2T = 0.45T + 1 · 0.2T = 0.65T

R2

2
= 0.45T + ⌈ 0.65T

0.8T ⌉ · 0.2T = 0.45T + 1 · 0.2T = 0.65T < D2 = T

R3 = C3 + ⌈R3

T1

⌉ · C1 + ⌈R3

T2

⌉ · C2. Assume that R0

3
= C3 = 0.2T :

R1

3
= 0.2T + ⌈ 0.2T

0.8T ⌉ · 0.2T + ⌈ 0.2TT ⌉ · 0.45T = 0.2T + 1 · 0.2T + 1 · 0.45T = 0.85T

R2

3
= 0.2T + ⌈ 0.85T

0.8T ⌉ · 0.2T + ⌈ 0.85TT ⌉ · 0.45T = 0.2T + 2 · 0.2T + 1 · 0.45T = 1.05T

R3

3
= 0.2T + ⌈ 1.05T

0.8T ⌉ · 0.2T + ⌈ 1.05TT ⌉ · 0.45T = 0.2T + 2 · 0.2T + 2 · 0.45T = 1.5T

R4

3
= 0.2T + ⌈ 1.5T

0.8T ⌉ · 0.2T + ⌈ 1.5TT ⌉ · 0.45T = 0.2T + 2 · 0.2T + 2 · 0.45T = 1.5T ≤ D3 = 1.5T

Conclusion: all tasks meet their deadlines!



PROBLEM 6

Define priority according to the following: H = highest priority, M = medium priority and L = lowest
priority. Since DM is used, the task priorities are determined by the task deadlines. To that end, task
τ1 has highest priority (shortest deadline) och process τ3 has lowest priority.

We first determine the ceiling priority of each resource:

ceil{Ra} = max{H,M,L} = H (since τ1, τ2 and τ3 can request the semaphore)

ceil{Rb} = max{M,L} = M (since τ2 and τ3 can request the semaphore)

ceil{Rc} = max{H,M,L} = H (since τ1, τ2 and τ3 can request the semaphore)

We then identify, for each task τi, which tasks with lower priority that can block τi and thereby determines
the corresponding blocking factor Bi. Note that nested blocking is used by all tasks. This could lead to
accumulated critical region blocking times in the final blocking factor.

B1 = max{H2,a, H2,c + H2,b, H3,a, H3,c} = max{1, 4, 2, 2} = 4 (since τ1 can be blocked by τ2 och
τ3 that locks resources whose ceiling priorities are higher than, or equal to, the priority of τ1; note
accumulated blocking time due to the nested blocking by τ2)

B2 = max{H3,c, H3,b + H3,a} = max{2, 5} = 5 (since τ2 can be blocked by τ3 that locks resources
whose ceiling priorities are higher than, or equal to, the priority of τ2; note accumulated blocking time
due to the nested blocking by τ3)

B3 = 0 (since τ3 has the lowest priority among all tasks, and thereby per definition cannot suffer
blocking)

We now calculate the response time of each task and compare it against the corresponding task deadline:

R1 = C1 +B1 = 6 + 4 = 10 ≤ D1 = 10.

R2 = C2 +B2 + ⌈R2

T1

⌉ · C1. Assume that R0

2 = C2 = 7:

R1
2 = 7 + 5 + ⌈ 7

31
⌉ · 6 = 7 + 5 + 1 · 6 = 18.

R2

2
= 7 + 5 + ⌈ 18

31
⌉ · 6 = 7 + 5 + 1 · 6 = 18 > D2 = 17.

R3 = C3 +B3 + ⌈R3

T1

⌉ · C1 + ⌈R3

T2

⌉ · C2. Assume that R0
3 = C3 = 10:

R1

3
= 10 + 0 + ⌈ 10

31
⌉ · 6 + ⌈ 10

29
⌉ · 7 = 10 + 0 + 1 · 6 + 1 · 7 = 23

R2

3
= 10 + 0 + ⌈ 23

31
⌉ · 6 + ⌈ 23

29
⌉ · 7 = 10 + 0 + 1 · 6 + 1 · 7 = 23 < D3 = 25

Conclusion: task τ2 may miss its deadline!



PROBLEM 7

a) Advantages with global scheduling:

• Supported by most multiprocessor operating systems (Windows 7, Mac OS X, Linux).

• Effective utilization of processing resources (unused processor time can easily be reclaimed,
for example when a task does not execute its full WCET).

Disadvantages with global scheduling:

• Weak theoretical framework (few results from the uniprocessor case can be used).

b) The guarantee utilization bound for RM-US is m2

3m−2
. Since m = 3, we have m2

3m−2
= 9/7 ≈ 1.285.

Therefore, all deadlines will be met because total utilization 1.25 is not larger than 1.285.

c-i) Let the two processors are indexed as P1 and P2. Task τ4 with the smallest period is assigned to
processor P1. Since task τ1 has utilization 0.6, it must be assigned to P2. After assigning τ1 and
τ4, processor P1 and P2 have total utilization 0.5 and 0.6, respectively.

Consider task τ2 that has period 20. If τ2 is assigned to P1, then we must have C2/20 + 0.5 ≤
2(
√
2−1) according to Liu and Layland’s sufficient test for one processor. This implies C2 ≤ 6.5685.

Therefore, the largest integer value of C2 is 6.

If C2 = 6, then C3 = 2C2 = 12. The utilization of task τ3 with C3 = 12 is 12/40 = 0.3. And, there
is no processor where task τ3 can be assigned.

If C2 = 5, then C3 = 10 and the utilization of τ3 is 10/40 = 0.25. And, there is no processor where
task τ3 can be assigned.

If C2 = 4, then C3 = 8 and the utilization of τ3 is 8/40 = 0.20. Now task τ3 can be assigned to
P2. Therefore, the largest value of C3 is 8.

We have the following tasks-to-processors assignment:

P1← τ2, τ4 where C3 = 8

P2← τ1, τ3

c-ii) The new task τ5 can be assigned to P1 since total utilization of the tasks τ4, τ2 already assigned
to P1 is 0.7. Task τ5’s utilization is 0.05 and can be assigned to P1.

P1← τ2, τ4, τ5 where C3 = 8

P2← τ1, τ3


