
Real-Time Systems — EDA222/DIT161

Solutions to final exam March 10, 2014

PROBLEM 1

a) True: No scheduling algorithm can schedule a task set that requires more 100% capacity of the
platform.

b) True: Due to fixed-priority based scheme, an upper bound on queuing delay can be computed.

c) False: No such test is known so far since the critical instant is not yet known.

d) False: Hard real-time guarantee can be provided for sporadic tasks since the inter-arrival time of
consecutive jobs has a lower bound.

e) False: There is no deadlock in non-preemptive scheduling since we cannot have a circular wait.

f) False: Interrupts are local to each processor, i.e., applicable in uniprocessor system.

PROBLEM 2

a) See lecture notes for Lecture 5 (slide 3-4).

b) See lecture notes for Lecture 4 (slide 18).

PROBLEM 3

a) The WCET of main is dependent on the WCET of functions “FuncA”, “FuncB”, and “FuncC”.
“FuncA” calculates the Greatest Common Devisor of two values. “FuncC” looks for a value in an
array of sorted elements using binary search algorithm.

WCET of “main”:

WCET (main) = {Dec, F lag}+ {Dec, result}+ {Dec, P}+ {Dec,Q}+ {Dec, find}+ {Dec, count}
+ {Dec, data}+ {Assign, data[6]}+ {Assign, count = 6}+ {Assign, P = −16}+ {Assign,Q = 12}
+ {Assign, F lag = ‘F ′}+ {abs, abs(P )}+ {mod, (abs(P )%Q)}+ {Comp, (abs(P )%Q)! = 0}
+ {abs, abs(P )}+ {call, FuncA(abs(P ), Q)}+WCET (FuncA(16, 12))

+ {Assign, find = FuncA(abs(P ), Q)}+ {sub, count− 1}+ {call, FuncC(data, find, 0, count− 1)}
+WCET (FuncC(data, 4, 0, 5)) + {assign, result = FuncC(data, find, 0, count− 1)}
+ {comp, result == −1}+ {comp, result <= 16}+ {assign, F lag = T}+ {return, 2}
= 45 +WCET (FuncA(16, 12)) +WCET (FuncC(data, 4, 0, 5))



WCET of “FuncA”: There are two cases for calculating the WCET of FuncA: Case(i) y == 0,
Case(ii) y!=0.

Case(i)WCET (FuncA(x, y == 0)) = {Comp, y == 0}+ {return, x} = 2 + 2 = 4

Case(ii)WCET (FuncA(x = 16, y = 12)) = {Comp, y == 0}+ {mod, x%y}+ {call, FuncA(y, x%y)}
+WCET (FuncA(12, 16%12)) + {return, FuncA(y, x%y)}
= 11 +WCET (FuncA(12, 16%12))

WCET (FuncA(x = 12, y = 16%12)) = {Comp, y == 0}+ {mod, x%y}+ {call, FuncA(y, x%y)}
+WCET (FuncA(4, 12%4)) + {return, FuncA(y, x%y)}
= 11 +WCET (FuncA(4, 12%4))

==>

WCET (FuncA(16, 12)) = 11 + 11 + 4 = 26

WCET of “FuncC”:

WCET (FuncC(data, x = 4, y = 0, z = 5)) = {Dec, start}+ {Dec, end}+ {Dec,mid}+ {assign, start = 0}
+ {assign, end = 5}+ {sub, end− start}+ {div, (end− start)/2}+ {add, start+ (end− start)/2}
+ {assign,mid = start+ (end− start)/2)}+ {Comp, start > end}+ {Comp, data[mid] == x}
+ {Comp, data[mid] > x}+ {add,mid+ 1}+ {call, FuncC(data, x,mid+ 1, end)}
+WCET (FuncC(data, 4, 3, 5)) + {return, FuncC(data, x,mid+ 1, end)}
= 29 +WCET (FuncC(data, 4, 3, 5))

WCET (FuncC(data, x = 4, y = 3, z = 5)) = {Dec, start}+ {Dec, end}+ {Dec,mid}+ {assign, start = 3}
+ {assign, end = 5}+ {sub, end− start}+ {div, (end− start)/2}+ {add, start+ (end− start)/2}
+ {assign,mid = start+ (end− start)/2)}+ {Comp, start > end}+ {Comp, data[mid] == x}
+ {Comp, data[mid] > x}+ {sub,mid− 1}+ {call, FuncC(data, x, start,mid− 1)}
+WCET (FuncC(data, 4, 3, 3)) + {return, FuncC(data, x, start,mid− 1)}
= 29 +WCET (FuncC(data, 4, 3, 3))

WCET (FuncC(data, x = 4, y = 3, z = 3)) = {Dec, start}+ {Dec, end}+ {Dec,mid}+ {assign, start = 3}
+ {assign, end = 5}+ {sub, end− start}+ {div, (end− start)/2}+ {add, start+ (end− start)/2}
+ {assign,mid = start+ (end− start)/2)}+ {Comp, start > end}+ {Comp, data[mid] == x}
+ {call, FuncB(data[mid])}+WCET (FuncB(data[3])) + {return, FuncB(data[mid])}
= 24 +WCET (FuncB(data[3]))

==>

WCET (FuncC(data, 4, 0, 5)) = 29 + 29 + 24 +WCET (FuncB(data[3]))

= 82 +WCET (FuncB(data[3]))



WCET of “FuncB”:

WCET (FuncB(y = 4)) = {Dec, z}+ {Assign, z = 2}+ {comp, 4 == 0}+ {comp, 4 > 1}+ {mul, 2 ∗ 2}
+ {assign, 4 = 2 ∗ 2}+ {sub, 4− 1}+ {assign, 3 = 4− 1}+ {comp, 3 > 1}+ {mul, 4 ∗ 4}
+ {assign, 16 = 4 ∗ 4}+ {sub, 3− 1}+ {assign, 2 = 3− 1}+ {comp, 2 > 1}+ {mul, 16 ∗ 16}
+ {assign, 256 = 16 ∗ 16}+ {sub, 2− 1}+ {assign, 1 = 2− 1}+ {comp, 1 > 1}+ {return, 2}
= 41

WCET of “main”:

WCET (main) = 45 +WCET (FuncA(16, 12)) +WCET (FuncC(data, 4, 0, 5))

= 45 + 26 + 82 + 41 = 194

The deadline is missed

b) According to the inputs provided here, the false paths are:

• The condition “if(abs(P)%Q!=0)” in the main function is always true, so “find=Q” is a false
path.

• In the main function, “result” is equal to 256, so the condition “if(result==-1)” is always
false which makes “return -1” a false path.

• In the main function, result is equal to 256 so the condition “if(result¡=16)” is always false
which makes “Flag = T and return 1” two false paths.

• In FuncB, the initial value for y is 4, so the condition “if(y==0)” is always false which makes
“return 1” a false path.

• In FuncC, the value of start is never greater than end, thus “return -1” is a false path.



PROBLEM 4

a) #include "TinyTimber.h"

typedef struct{

Object super;

char *id;

} RTprocess;

Object app = initObject();

RTprocess rtp1 = {initObject(), "T1"};

RTprocess rtp2 = {initObject(), "J1"};

RTprocess rtp3 = {initObject(), "T2"};

void exec1(RTprocess *self, int u) {

SEND(MSEC(60), MSEC(10), self, exec1, 0);

SEND(MSEC(10), MSEC(20), &rtp2, exec2, 0);

work1(); // executes for 10ms

}

void exec2(RTprocess *self, int u) {

work2(); // executes for 20ms

}

void exec3(RTprocess *self, int u) {

SEND(MSEC(60), MSEC(0), self, exec3, 0); // or AFTER(MSEC(60), self, exec3, 0);

work3(); // executes for 40ms

}

void kickoff(RTprocess *self, int u) {

SEND(MSEC(0), MSEC(10), &rtp1, exec1, 0);

SEND(MSEC(30), MSEC(0), &rtp3, exec3, 0); // or AFTER(MSEC(30), &rtp3, exec3, 0);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

b) The timing diagram is shown below:



PROBLEM 5

a) The DM priority ordering is as follows: τ1 is highest, τ2 is the medium, and τ1 is the lowest priority
task. By simulating the DM schedule of the tasks, if C3 = 3, then there is a deadline miss at time
t = 14. By simulating the DM schedule of the tasks, if C3 = 2, then all deadlines are met.

Since the same schedule in time 0 to 12 is repeated again from time t = 12, we have to generate
the table from time t = 0 to t = 12. Within [0, 12), the three tasks are executed as follows: task
τ1 executes in (1,2), (4,5), (7,8), and (10,11); task τ2 executes in (0,1), (5,6), and (8,9); and task
τ3 executes in (2,4), (9,10), (11,12).

b) See lecture notes for Lecture 10 (slide 21-22).

c) See lecture notes for Lecture 10 (slide 7).

PROBLEM 6

a) Yes. The utilization bound of EDF is 100% when Di = Ti for all tasks. A DM-schedulable task set
must have total utilization not larger than 100%.

b) We have to apply processor demand analysis. The least common multiple of the periods is 20. The
set of control points for task τ1 is K1 = {5, 10, 15, 20}. The set of control points for task τ2 is
K2 = {6, 16}. Finally, the set of control points for task τ3 is K3 = {2C3} since 2C3 + T3 > 20.
Therefore, the set of all the control points for all the tasks is

K = K1 ∪K2 ∪K3 = {5, 6, 10, 15, 16, 20} ∪ {2C3}

Since C3 ≥ 5, the value of the control point 2C3 must satisfy 2C3 ≥ 10.

The processor demand for L = 5 is

(⌊
5−D1

T1

⌋
+ 1

)
· C1 +

(⌊
5−D2

T2

⌋
+ 1

)
· C2 +

(⌊
5−D3

T3

⌋
+ 1

)
· C3

=

(⌊
5− 5

5

⌋
+ 1

)
· 2 +

(⌊
5− 6

10

⌋
+ 1

)
· 3 +

(⌊
5− 2C3

20

⌋
+ 1

)
· C3 = 2 ≤ L = 5 (OK!)

The processor demand for L = 6 is(⌊
6−D1

T1

⌋
+ 1

)
· C1 +

(⌊
6−D2

T2

⌋
+ 1

)
· C2 +

(⌊
6−D3

T3

⌋
+ 1

)
· C3

=

(⌊
6− 5

5

⌋
+ 1

)
· 2 +

(⌊
6− 6

10

⌋
+ 1

)
· 3 +

(⌊
6− 2C3

20

⌋
+ 1

)
· C3 = 2 + 3 = 5 ≤ L = 6 (OK!)

The processor demand for L = 10 (assuming that 2C3 = 10) is(⌊
10− 5

5

⌋
+ 1

)
· 2 +

(⌊
10− 6

10

⌋
+ 1

)
· 3 +

(⌊
10− 2C3

20

⌋
+ 1

)
· C3

= 4 + 3 + C3 = 7 + C3 = 7 + 5 = 12 > L = 10 (NOT OK!)



Therefore, to guarantee schedulability, we must have 2C3 > 10. Since C3 is an integer, the next
possible choice of 2C3 is 12. Consequently, the control point for 2C3 is 2C3 = 12. The processor
demand for L = 12 (assuming 2C3 = 12) is(⌊

12− 5

5

⌋
+ 1

)
· 2 +

(⌊
12− 6

10

⌋
+ 1

)
· 3 +

(⌊
12− 2C3

20

⌋
+ 1

)
· C3

= 4 + 3 + C3 = 7 + C3 = 7 + 6 = 13 > L = 12 (NOT OK!)

Therefore, to guarantee schedulability, we must have 2C3 > 12. Since C3 is an integer, the next
possible choice of 2C3 is 14. Consequently, the control point for 2C3 is 2C3 = 14. The processor
demand for L = 14 (assuming 2C3 = 14) is(⌊

14− 5

5

⌋
+ 1

)
· 2 +

(⌊
14− 6

10

⌋
+ 1

)
· 3 +

(⌊
14− 2C3

20

⌋
+ 1

)
· C3

= 4 + 3 + C3 = 7 + C3 = 7 + 7 = 14 <= L = 14 (OK!)

The next control points in K is at L = 15. The processor demand for L = 15 (assuming 2C3 = 14)
is (⌊

15− 5

5

⌋
+ 1

)
· 2 +

(⌊
15− 6

10

⌋
+ 1

)
· 3 +

(⌊
15− 2C3

20

⌋
+ 1

)
· C3

= 6 + 3 + 7 = 16 > L = 15 (NOT OK!)

Since 7 ≥ C3 ≥ 5, the task set is not EDF schedulable.

c) See lecture notes for Lecture 12 (slide 17).

PROBLEM 7

a) The utilization of the tasks are

Ci Ti ui

τ1 2 10 0.2
τ2 10 25 0.4
τ3 12 30 0.4
τ4 5 10 0.5
τ5 8 20 0.4
τ6 7 100 0.07

The order of allocation (based in increasing period) is τ1, τ4, τ5, τ2, τ3 and τ6. The three processors
are indexed as P1, P2, and P3.

Task τ1 can be allocated to P1 since there is no other tasks in P1.

Task τ4 can also be allocated to P1 since u1 + u4 = 0.2 + 0.5 <= 2 · (2 1
2 − 1) = 0.824.

Task τ5 cannot be allocated to P1 since u1+u4+u5 = 0.2+0.5+0.4 > 1. Task τ5 can be allocated
to P2 since there is no other task in P2.

Task τ2 cannot be allocated to P1 since u1+u4+u2 = 0.2+0.5+0.4 > 1. Task τ4 can be allocated
to P2 since u5 + u2 = 0.4 + 0.4 <= 0.824.

Task τ3 cannot be allocated to P1 since u1 + u4 + u3 = 0.2 + 0.5 + 0.4 > 1. Task τ3 cannot be
allocated to P2 since u5 +u2 +u3 = 0.4+ 0.4+ 0.4 > 1. Task τ3 can be allocated to P3 since there
is no other task in P3.



Task τ6 can be allocated to P1 since u1+u4+u6 = 0.2+0.5+0.07 = 0.77 <= 3 · (2 1
3 − 1) = 0.779.

So, the final allocation is as follows:

P1 gets τ1, τ4, and τ6.

P2 gets τ5 and τ2.

P3 gets τ3.

b) Task τ2 is removed from the task set. The new task τ7 has WCET C7 = 3. The smallest possible
period T7 is 3. In such case the utilization is u7 = 1. We have to check if a successful allocation
using RMFF exists.

The order of allocation (in order of increasing period) is τ7, τ1, τ4, τ5, τ3 and τ6. The three
processors are indexed as P1, P2, and P3.

Task τ7 can be allocated to P1 since there is no other tasks in P1.

Task τ1 cannot be allocated to P1 since P1 is full. Task τ1 can be allocated to P2 since there is no
other task in P2.

Task τ4 cannot be allocated to P1 since P1 is full. Task τ4 can be allocated to P2 since u1 + u4 =
0.2 + 0.5 <= 2 · (2 1

2 − 1) = 0.824.

Task τ5 cannot be allocated to P1 since P1 is full. Task τ5 cannot be allocated to P2 since
u1 + u4 + u5 = 0.2 + 0.5 + 0.4 > 1. Task τ5 can be allocated to P3 since there is no other task in
P3.

Task τ3 cannot be allocated to P1 since P1 is full. Task τ3 cannot be allocated to P2 since since
u1 + u4 + u3 = 0.2 + 0.5 + 0.4 > 1. Task τ3 can be allocated to P3 since u5 + u3 = 0.4 + 0.4 <=
2 · (2 1

2 − 1) = 0.824.

Task τ6 cannot be allocated to P1 since P1 us full. Task τ6 can be allocated to P2 since u1+u4+u6 =
0.2 + 0.5 + 0.07 = 0.77 <= 3 · (2 1

3 − 1) = 0.779.

So, the final allocation is as follows:

P1 gets τ7.

P2 gets τ1, τ4, and τ6.

P3 gets τ5 and τ3.

Since the allocation is successful, the smallest period T7 is T7 = C7 = 3.

c) See lecture notes for Lecture 14 (slide 22).


