
Real-Time Systems

Solutions to final exam March 6, 2012

PROBLEM 1

a) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of
processors become very large.

b) True: Too large over-estimation of the execution time of a task will leave less slack for the execution
of other tasks in the schedulability analysis.

c) False: Sporadic tasks can be used in a real-time system with hard timing constraints since such
tasks have a guaranteed minimum interarrival time, thus giving an upper bound of these tasks’
utilization of the processor.

d) False: The critical instant refers to a point in time when the response time of an analyzed task
is maximized. In single-processor system the critical instant occurs when the task arrives at the
same time as all tasks with higher priority.

e) False: By following certain guidelines of how to request resources it is possible to avoid deadlock.

f) False: By deadline inversion we mean a situation where a task with high priority (deadline close in
time) is blocked from executing because another task with lower priority (deadline later in time)
is holding an exclusive resource needed by the high-priority task.

PROBLEM 2

a) Waiting for a corresponding time slot (TTP/C), Waiting for a transmission token (FDDI), Waiting
for a contention-free transmission (Ethernet), Waiting for network priority negotiation (CAN).

b) The message transmission delay consists of:

Frame delay: tframe = Nframe/R, where Nframe is the message length (in bits) and R is the data
rate (in bits/s).

Propagation delay: tprop = L/v, where L is the communication distance (in m) and v is the
signal propagation velocity (in m/s).

c) Message queuing delay for Ethernet can in general not be bounded because a re-transmission will
happen every time a collision on the communication medium occurs.

d) The binary countdown protocol:

1. Each node with a pending message waits until bus is idle.

2. The node begins transmitting the highest-priority message pending on the node. Identifier is
transmitted first, in the order of most-significant bit to least-significant bit.

3. If a node transmits a recessive bit (1) but sees a dominant bit (0) on the bus, then it stops
transmitting since it is not transmitting the highest-priority message in the system.

4. The node that transmits the last bit of its identifier without detecting a bus inconsistency
has the highest priority and can start transmitting the body of the message.



PROBLEM 3

a) The WCET of main is dependent on the WCET of functions “methA”, “methB” and “multiply”.
So, we first calculate the WCET of functions “methA”, “methB” and “multiply”.

WCET of “multiply”

WCET(multiply(a,b))= {multiplication}+{return}=5+2=7

WCET of “methA”

There are two cases for calculating the WCET of methA: case (i) b==0 and case(ii) b >0

Case(i)

WCET(methA(a,b==0))={dec, p}+{dec, i}+{assign, p}+{assign, i}+

{compare, b==0}+{return} =1+1+1+1+2+2=8

Case(ii)

The WCET of methA for this case depends on the number of times the while loop executes. The
WCET of the while loop for parameter b is given as “WCET(whileLoop, b)”. Therefore, we have

WCET(methA(a,b>0))={dec, p}+{dec, i}+{assign, p}+{assign, i}+

{compare, b==0}+ WCET(whileLoop, b)+ {return}

=1+1+1+1+2+(16b-14)+2=16b-6

where WCET(whileLoop, b)=(16b-14). The value of WCET(whileLoop, b) is calculated as
follows. The body of the while loop executes (b − 1) times and the comparison statement of the
while is checked b times.

WCET(whileLoop, b)= b * {comparison}+ (b-1)* ({call, multiply(p,a)}

+{WCET(multiply(p,a))}+{assign, p}+{add, i+1}+{assign, i})

=b * 2+(b-1)*(2+7+1+3+1)=16b-14

WCET of “methB”

There are two cases for calculating the WCET of methB: case (i) b==1 and case(ii) b >1

Case(i)

WCET(methB(a,b==1))={compare, b==1}+{return}=2+2=4



Case(ii)

WCET(methB(a,b>1))={compare, b==1}+{sub, b-1}+{call, methB(a,b-1)}

+WCET(methB(a,b-1))+{call, multiply(a,methB(a,b-1))}

+WCET(multiply(a,methB(a,b-1))+{return}

=2+3+2+WCET(methB(a,b-1))+2+7+2=18+WCET(methB(a,b-1))

WCET of “main”

Now we can calculate the WCET of main

WCET(main)={dec, ans}+{dec, x}+{dec, y}+{assign,x}+{assign,y}

+{call, methA(2,3)}+WCET(methA(2,3))+{call, methB(2,3)}

+WCET(methB(2,3))+ {compare,methA(2,3)>methB(2,3) }+{assign, ans}+return

=1+1+1+1+1+2+WCET(methA(2,3))+2+WCET(methB(2,3))+2+1+2

=14+WCET(methA(2,3))+WCET(methB(2,3))

=14+42+40=96 (deadline is missed!!)

where

WCET(methA(2,3))=16*3-6=42

and,

WCET(methB(2,3))=18+WCET(methB(2,2))=18+18+WCET(methB(2,1))=18+18+4=40

b) The false paths are:

In methA() the statement “return 1” is never executed since the value of b is not 0 since the value
for formal parameter b in methA(a,b) is 3.

The condition “if (methA(x,y) > methB(x,y))” in the main() function is never true since both
methA and methB compute x raised to the power y. Thus, the two statements “ans=’T’;” and
“x=x+y;” are never executed.

PROBLEM 4

a), b) The final code should look similar to this:

#include TinyTimber.h

typedef struct {

Object super;

char *id;

} PeriodicTask;

Object app = initObject();

PeriodicTask ptask1 = { initObject(), "Task 1" };

PeriodicTask ptask2 = { initObject(), "Task 2" };



Time max_wcet = 0;

void T1(PeriodicTask *self, int u) {

Time start;

Time diff;

start = CURRENT_OFFSET();

Action1(); // procedure doing time-critical work

diff = CURRENT_OFFSET() - start;

if (diff > max_wcet)

max_wcet = diff;

SEND(MSEC(85), MSEC(30), self, T1, 0);

}

void T2(PeriodicTask *self, int u) {

Action2(); // procedure doing time-critical work

SEND(MSEC(105), MSEC(55), self, T2, 0);

}

void kickoff(PeriodicTask *self, int u) {

SEND(MSEC(20), MSEC(30), &ptask1, T1, 0);

SEND(MSEC(0), MSEC(55), &ptask2, T2, 0);

}

main() {

return TINYTIMBER(&app, kickoff, 0);

}

c) The priorities for the periodic activities are given by the deadlines in the SEND() calls, since the
TinyTimber kernel uses earliest-deadline-first scheduling.

PROBLEM 5

a) Priority Inheritance Protocol: When a task τi blocks one or more higher-priority tasks, it tem-
porarily assumes (inherits) the highest priority of the blocked tasks.

a) Priority Ceiling Protocol: Each resource is assigned a priority ceiling equal to the priority of the
highest-priority task that can lock it. Then, a task τi is allowed to enter a critical section only if
its priority is higher than all priority ceilings of the resources currently locked by tasks other than
τi. When the task τi blocks one or more higher-priority tasks, it temporarily inherits the highest
priority of the blocked tasks.

Advantages of PCP over PIP: (i) No deadlock: priority ceilings prevent deadlocks, (ii) No chained
blocking: with PCP a task can be blocked at most the duration of one critical section (PIP can
have chained blocking).

c) Define the priorities as follows: H = highest priority, MH = second highest priority, ML = third highest
priority and L = lowest priority. Since rate-monotonic scheduling is used, the task priorities are
as follows: prio(τ1) = H, prio(τ2) = L, prio(τ3) = ML, and prio(τ4) = MH.



We first determine the ceiling priority for each semaphore:

ceil{Ra} = max{H,L} = H (since τ1 och τ2 may lock the semaphore)

ceil{Rb} = max{MH,ML} = MH (since τ3 och τ4 may lock the semaphore)

ceil{Rc} = max{H,MH} = H (since τ1 och τ4 may lock the semaphore)

We then identify, for each task τi, what tasks with lower priority may block τi and thereby cause
the corresponding blocking factor Bi:

B1 = max{H2,a, H4,c} = max{2, 3} = 3 (since τ1 may be blocked by τ2 and τ4 who lock
semaphores whose ceiling priorities are higher than or equal to the priority of τ1)

B2 = 0 (since τ2 has lowest priority of all tasks, and thereby per definition cannot
be subject to blocking)

B3 = max{H2,a} = 2 (since τ3 may be blocked by τ2 who locks a semaphore whose ceiling
priority is higher than or equal to the priority of τ3)

B4 = max{H2,a, H3,b} = max{2, 1} = 2 (since τ4 may be blocked by τ2 and τ3 who lock
semaphores whose ceiling priorities are higher than or equal to the priority of τ2)

PROBLEM 6

a) Time-table scheduling works as follows:

• Create a circular queue that corresponds to the time table: Each element in the queue contains
start and finish times for a certain task (or task segment in case of preemptive scheduling).
The elements in the queue are sorted by the start time

• Use clock interrupts: When a task starts executing, a real-time clock is programmed to
generate an interrupt at the tasks expected finish time. When the interrupt occurs, the next
task (the one whose start time is closest in time) in the circular queue is fetched and the
system waits until that tasks given start time is due.

b) The length of the schedule is: LCM (T1, T2, T3) = LCM (4, 8, 16) = 16. By simulating earliest-
deadline-first scheduling we get the following schedule:

0 5 10 15 t

-
τ11 τ21 τ31 τ41τ12 τ22τ13 τ13

c) The generated schedule is the best possible (optimal). In a schedule generated by, for example, the
deadline monotonic policy task τ3 will miss its deadline.

PROBLEM 7

Since deadline-monotonic scheduling is used, the task priorities are as follows: prio(τ1) = H, prio(τ2) =
M, prio(τ3) = L.

We generate a multiprocessor schedule with tasks τ1 and τ2 (having the highest priorities) running on
one processor each. Task τ3 is scheduled in the remaining time slots according to the following diagram
(covering t = 0 to t = 47):



0 10 20 30 40 t

-

τ1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

τ2 ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓

τ3 ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓

µ1

µ2

τ11 τ21 τ31 τ41 τ51 τ61 τ71 τ81 τ51 τ61 τ71

τ1
2

τ2
2

τ3
2

τ4
2

τ5
2

τ6
2

τ7
2

τ1
3

τ23

τ2
3

τ3
3

τ33

τ4
3

τ43 τ53

τ5
3

We observe that there is a critical instant at t = 30 in the diagram, maximizing the response time of τ3
(R3 = 8). Since R3 > D3 the schedule is not feasible.

Note that t = 10 is not a critical instant (which it would have been for a single-processor system)!


