
Real-Time Systems — EDA222/DIT161

Final exam, March 13, 2017 at 08:30 – 12:30 in the SB building

Examiner:
Professor Jan Jonsson, Department of Computer Science and Engineering

Responsible teacher:
Jan Jonsson, phone: 031–772 5220
Visits the exam at 09:30 and 11:30

Aids permitted during the exam:
J. Nordlander, Programming with the TinyTimber kernel
Chalmers-approved calculator

Content:
The written exam consists of 8 pages (including cover and hand-in sheets),
containing 7 problems worth a total of 60 points.

Grading policy:
24–35 ⇒ grade 3
36–47 ⇒ grade 4
48–60 ⇒ grade 5

Results:
When the grading is completed overall result statistics, and a time and location for inspection,
will be announced on the course home page. Individual results will be posted in PingPong
under ’Objectives & Progress’.

Language:
Your solutions should be written in English.

IMPORTANT ISSUES

1. Use separate sheets for each answered problem, and mark each sheet with the problem number.

2. Justify all answers. Lack of justification can lead to loss of credit even if the answer might be
correct.

3. Explain all calculations thoroughly. If justification and method is correct then simple calculation
mistakes do not necessarily lead to loss of credit.

4. If some assumptions in a problem are missing or you consider that the made assumptions are
unclear, then please state explicitly which assumptions you make in order to find a solution.

5. Write clearly! If we cannot read your solution, we will assume that it is wrong.

6. Hand-in sheets are available at the end of the exam script. Do not forget to submit them together
with your other solution sheets!

Good Luck!



PROBLEM 1

State whether the following propositions are True or False. Each correct statement will give 0.5
points; each erroneous statement will give -0.5 points; an omitted statement gives 0 points. Although
a motivation for a correct answer is not required, a convincing one gives another 0.5 points, while an
erroneous/weak one gives another -0.5 points. Quality guarantee: The total result for this problem
cannot be less than 0 points. (6 points)

a) In systems using rate-monotonic (RM) scheduling, it is impossible to find a feasible schedule for a
set of five tasks whose accumulated utilization is 100%.

b) For a sporadic task there is a maximum time interval between two, subsequent, arrivals that is
guaranteed to never be exceeded.

c) For an NP-complete problem to have pseudo-polynomial time complexity the largest number in the
problem must be bounded by the input length (size) of the problem.

d) The term critical instant in schedulability analysis refers to the latest point in time by which a task
must have started its execution in order to meet its deadline.

e) The term false path in execution-time analysis refers to a program subroutine that always returns
the Boolean value False when running the program.

f) If a given task set is known to be schedulable, a necessary feasibility test will always report the answer
“yes” when applied to that task set.

PROBLEM 2

In real-time systems that employ concurrent execution of multiple tasks with shared resources there is
a potential risk that deadlock may occur.

a) State the four conditions for deadlock to occur in such systems. (4 points)

b) In such systems where tasks are assigned static priorities it is possible to avoid deadlock by using
a run-time protocol that supports ceiling priorities. Describe the basic idea of a priority ceiling
protocol (such as ICPP). (4 points)

PROBLEM 3

Most scheduling analysis techniques assume the worst-case execution time (WCET) to model the com-
putational demand of a real-time task. One of the earliest methods for WCET analysis was presented
by Shaw in the end of the 1980s.

Assume that the function GenPulse (see below) is used as part of a program in a real-time system.

The system has one output port, Outport, located at address 0x40020C14. The two least significant
bits, b1 and b0, of the output port each constitute a control signal to a separate actuator.

The system has two input ports, Inport1 (at address 0x40021010) and Inport2 (at address 0x40021011).
Each input port is connected to a separate sensor that delivers 8-bit values in the range [−128,+127].

The program code of GenPulse compares the values read from the input ports and generates pulses on
the output port bits b1 and b0. The width, that is the time between positive flank and negative flank, of
each pulse is determined by the relation between the read values (as can be seen in the program code).

The system specification contains two strict timing constraints: (1) the width of the pulse on bit b1 on
the output port cannot be less than 400 µs, and (2) the width of the pulse on bit b0 on the output port
cannot exceed 800 µs.



#define Inport1 (*((volatile signed char *)(0x40021010)))

#define Inport2 (*((volatile signed char *)(0x40021011)))

#define Outport (*((volatile unsigned char *)(0x40020C14)))

void GenPulse() {

signed char d1;

signed char d2;

unsigned char c;

d1 = Inport1;

d2 = Inport2;

if (d1 == d2)

c = 47;

else

c = 31;

Outport = 0x01; // start pulse on bit 0 (positive flank)

while (c > 0)

c = c - 1;

if (d1 < d2)

c = 77;

else

c = 61;

Outport = 0x03; // start pulse on bit 1 (positive flank)

while (c > 0)

c = c - 1;

Outport = 0x00; // end pulses on bits 0 and 1 (negative flanks)

}

Use Shaw’s method to solve sub-problems a), b) and c). To that end, assume the following costs:

• Each declaration and assignment statement costs 1 µs to execute.

• Each evaluation of the logical condition in an if-statement costs 2 µs.

• Each evaluation of the logical condition in a while-statement costs 2 µs.

• Each subtract operation costs 4 µs.

• All other language constructs can be assumed to take 0 µs to execute.

a) Derive the minimum width (expressed in µs) of the pulse on bit b1 on the output port, and determine
whether the minimum-width constraint of 400 µs is met or not. (3 points)

b) Derive the maximum width (expressed in µs) of the pulse on bit b0 on the output port, and determine
whether the maximum-width constraint of 800 µs is met or not. (5 points)

c) What are the widths (expressed in µs) of the pulses on bits b1 and b0 on the output port if the value
on Inport1 is −121 and the value on Inport2 is 93? (2 points)



PROBLEM 4

The TinyTimber kernel makes it possible to implement periodic activities in a C program. Consider a
real-time system with three periodic tasks T1, T2, and T3 that uses a common critical region that takes
250 µs to execute.

The three tasks all arrive at t = 0 and have a common period of 1000 µs, but their execution is precedence
constrained in the following way:

• First, task T1 should execute the critical region. The relative deadline for task T1 is 650 µs.

• Then, task T2 should execute the critical region. The relative deadline for task T2 is 950 µs.

• Finally, task T3 should execute the critical region. The relative deadline for task T3 is 800 µs.

You should write a TinyTimber program where the task executions are implemented using two meth-
ods, Non Critical and Critical. These methods are common for all tasks. Which task is currently
executing each method is indicated by the whoami member of the task object, which has the value ’1’
for task T1, the value ’2’ for task T2 and the value ’3’ for task T3. The critical region resides in method
Critical and consists of a call to the function Action250(), the code of which is assumed to already
exist.

a) In this sub-problem you should implement a version of the program where the critical region is called
via a SYNC statement in method Non Critical. Show that, by initially only starting task T1, it
is possible to get the desired execution order and timing behavior of the tasks. On a separate
sheet at the end of this exam paper you find a C-code template for this sub-problem. Add the
missing TinyTimber statements directly on that sheet (in the space where the ’TODO’ comments
are located) and hand it in for grading together with the rest of your solutions. (4 points)

b) In this sub-problem you should implement a version of the program where access to the critical
region is handled by means of a set of semaphores. Below you find the code of the include file
"semaphore.h" for the semaphore library used. Show that, by starting all three tasks concurrently
and using the semaphores in an appropriate way, it is possible to get the desired execution order
and timing behavior of the tasks. On a separate sheet at the end of this exam paper you find a
C-code template for this sub-problem. Add the missing information for the semaphore operations
directly on that sheet (on the ’ ’ lines in the program code where the ’TODO’ comments are
located) and hand it in for grading together with the rest of your solutions. (4 points)

struct call_block;

typedef struct call_block *Caller;

typedef struct call_block {

Caller next;

Object *obj;

Method meth;

} CallBlock;

#define initCallBlock() { 0, 0, 0 }

typedef struct {

Object super;

int value;

Caller queue;

} Semaphore;

void Wait(Semaphore*, int);

void Signal(Semaphore*, int);



PROBLEM 5

Consider a real-time system with three periodic tasks and a run-time system that employs earliest-
deadline-first (EDF) scheduling. The table below shows Ci (WCET), Di (deadline) and Ti (period) for
each task τi. The first instance of each task arrives at time t = 0.

Ci Di Ti

τ1 3 4 4
τ2 2 18 20
τ3 1 3 10

a) Explain why Liu & Layland’s utilization-based test for EDF scheduling cannot be used for the given
task set. (1 points)

b) Perform processor-demand analysis to determine the schedulability of the task set. (5 points)

c) Verify the outcome of the analysis in sub-problem b) by constructing a timing diagram for the
execution of the three tasks that spans the hyper period of the task set. (2 points)

PROBLEM 6

Consider the timing diagram below describing the execution order of two periodic tasks when rate
monotonic (RM) scheduling is used. Since RM is used, it applies for each task τi that its deadline Di is
equal to the period Ti. The first instance of each task arrives at time t = 0. The tasks are schedulable,
that is, they meet their deadlines. In the timing diagram we use τk

i
to denote instance k of the periodic

task τi. All values are given in milliseconds. The cost for switching tasks is assumed to be negligible.

0 10 20 30 40 t

✲
τ11 τ21 τ31 τ41τ12 τ22 τ32 τ32

a) It is clear from the given schedule that the execution times of the tasks are C1 = 4 and C2 = 6,
respectively. Decide the period Ti for each of the two tasks. (2 points)

b) Calculate, based on the given/derived values of Ci and Ti from sub-problem a), the utilization U for
this task set. (1 point)

As was mentioned, the task set given above meets the deadlines. However, if the execution time of any
of the tasks is increased ever so slightly a deadline will be missed (in this case, the deadline for the first
instance of τ2). A task set with such a property is said to critically utilize the processor.

c) Now add a third task to the task set as follows. Reduce the execution time of τ2 by half (that is, let
C2 = 3) while keeping the period T2 the same as before. Then, let the new task τ3 arrive at time 0
and let its execution time C3 = 3. Derive the period T3 for τ3 that both minimizes the utilization
U of the task set and critically utilizes the processor. Also, state the resulting minimum utilization
of the task set. Hint: only integer values ≤ 20 for the period T3 need to be considered. (5 points)

d) Based on the utilizations derived in sub-problems b) and c), now imagine that you add, in a similar
manner, a fourth (a fifth, a sixth etc) task to the task set. What is your prediction of the lowest
utilization U for the updated task set when it critically utilizes the processor? (2 points)



PROBLEM 7

Consider the partitioned approach for scheduling tasks on a multiprocessor platform.

a) What is the Oh & Baker utilization guarantee bound for a system with m processors using the
rate-monotonic first-fit (RMFF) partitioned scheduling algorithm? (1 point)

b) What is the best possible utilization guarantee bound for a system with m processors using a parti-
tioned scheduling algorithm with static task priorities (such as RMFF)? (1 point)

c) The table below shows Ci (WCET) and Ti (period) for six periodic tasks to be scheduled on m = 3
processors using the RMFF algorithm. The relative deadline of each periodic task is equal to its
period. The first instance of each task arrives at time t = 0. The values of Ci and Ti are positive
integers. Determine the maximum value of C2 by assigning all the six tasks on m = 3 processors
based on the RMFF algorithm so that all the deadlines are met. Show your assignment of the
tasks to the processors. (4 points)

Ci Ti

τ1 10 50
τ2 ? 200
τ3 8 20
τ4 7 10
τ5 5 30
τ6 40 100

d) The table below shows Ci (WCET) and Ti (period) for six periodic tasks to be scheduled on m = 3
processors using the RMFF algorithm. The relative deadline of each periodic task is equal to its
period. The first instance of each task arrives at time t = 0. The values of Ci and Ti are positive
integers. Determine the minimum value of T2 by assigning all the six tasks on m = 3 processors
based on the RMFF algorithm so that all the deadlines are met. Show your assignment of the
tasks to the processors. (4 points)

Ci Ti

τ1 10 50
τ2 2 ?
τ3 8 20
τ4 7 10
τ5 50 300
τ6 20 100



Hand-in sheet with program code for Problem 4 a). Anonymous code: ......................

#include "TinyTimber.h"

typedef struct {

Object super;

char whoami;

int deadline;

} Task;

Task T1 = { initObject(), ’1’, 650 };

Task T2 = { initObject(), ’2’, 950 };

Task T3 = { initObject(), ’3’, 800 };

void Critical(Task*, int);

void Non_Critical(Task *self, int unused) {

SYNC(self, Critical, 0);

if (self->whoami == ’1’) {

// TODO: insert TinyTimber code

}

if (self->whoami == ’2’) {

// TODO: insert TinyTimber code

}

if (self->whoami == ’3’) {

// TODO: insert TinyTimber code

}

}

void Critical(Task *self, int unused) {

Action250(); // Do critical work for 250 microseconds

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(T1.deadline), &T1, Non_Critical, 0);

}

main() {

return TINYTIMBER(&T1, kickoff, 0);

}



Hand-in sheet with program code for Problem 4 b). Anonymous code: ......................

#include "TinyTimber.h"

#include "semaphore.h"

Semaphore Sem1 = { initObject(), ___, 0 }; // TODO: set initial semaphore value

Semaphore Sem2 = { initObject(), ___, 0 }; // TODO: set initial semaphore value

Semaphore Sem3 = { initObject(), ___, 0 }; // TODO: set initial semaphore value

typedef struct {

Object super;

char whoami;

int deadline;

CallBlock cb; // where call-back information is stored

} Task;

Task T1 = { initObject(), ’1’, 650, initCallBlock() };

Task T2 = { initObject(), ’2’, 950, initCallBlock() };

Task T3 = { initObject(), ’3’, 800, initCallBlock() };

void Critical(Task*, int);

void Non_Critical(Task *self, int unused) {

self->cb.obj = (Object *) self; // provide call-back information

self->cb.meth = (Method) Critical;

if (self->whoami == ’1’)

ASYNC(&________, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

if (self->whoami == ’2’)

ASYNC(&________, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

if (self->whoami == ’3’)

ASYNC(&________, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

}

void Critical(Task *self, int unused) {

Action250(); // Do critical work for 250 microseconds

if (self->whoami == ’1’)

SYNC(&________, Signal, 0); // TODO: select semaphore to release

if (self->whoami == ’2’)

SYNC(&________, Signal, 0); // TODO: select semaphore to release

if (self->whoami == ’3’)

SYNC(&________, Signal, 0); // TODO: select semaphore to release

SEND(USEC(1000), USEC(self->deadline), self, Non_Critical, 0); // restart loop

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(T1.deadline), &T1, Non_Critical, 0);

BEFORE(USEC(T2.deadline), &T2, Non_Critical, 0);

BEFORE(USEC(T3.deadline), &T3, Non_Critical, 0);

}

main() {

return TINYTIMBER(&T1, kickoff, 0);

}


