
Real-Time Systems

Solutions to final exam March 13, 2017 (version 20170313)

PROBLEM 1

a) False: It is possible to construct a task set consisting of five (or more) tasks with harmonically
related periods that has an accumulated utilization equal to 100% and is schedulable with RM.
For example, a task set where each task has an execution time of 0.2 and a period of 1.

b) False: For a sporadic task there is a guaranteed minimum time interval between two subsequent
arrivals.

c) False: For an NP-complete problem to have pseudo-polynomial time complexity the largest number
in the problem cannot be bounded by the input length (size) of the problem

d) False: The critical instant refers to a point in time when the response time of an analyzed task
is maximized. In single-processor system the critical instant occurs when the task arrives at the
same time as all tasks with higher priority.

e) False: A false path is a piece of code that will never be executed when the program is running. For
example, due to conditional statements in the code.

f) True: If we know that the task set is schedulable then a necessary test must have resulted in the
outcome ’Yes’. This is because, for necessary tests, the outcome ’No’ always means that the task
set is not schedulable.

PROBLEM 2

a) The four conditions for deadlock is:

• Mutual exclusion – only one task at a time can use a resource

• Hold and wait – there must be tasks that hold one resource at the same time as they request
access to another resource

• No preemption – a resource can only be released by the task holding it

• Circular wait – there must exist a cyclic chain of tasks such that each task holds a resource
that is requested by another task in the chain

b) The basic idea of a priority ceiling protocol is as follows: Each resource is assigned a priority ceiling
equal to the priority of the highest-priority task that can lock it. Then, a task τi is allowed to
enter a critical region only if its priority is higher than all priority ceilings of the resources currently
locked by tasks other than τi. When the τi blocks one or more higher-priority tasks, it temporarily
inherits the highest priority of the blocked tasks.



PROBLEM 3

The pulse widths are determined by the relation between the values that are read from the input ports.
Denote by I1 the value read from Inport1. Denote by I2 the value read from Inport2.

In the following solutions we assume that a write to the output port takes effect as the corresponding
assignment operation ends.

a) The section of the program code that affects the width of the pulse on bit b1 on the output port is:

while (c > 0)

c = c - 1;

Outport = 0x00; // end pulses on bits 0 and 1 (negative flanks)

Let C2 be the value of variable c when this code section begins. The logical condition of the while
statement will then be evaluated C2 + 1 times, and the body of the while loop will be executed
C2 times. The pulse width Wb1

is then:

Wb1
= (C2 + 1) · {Compare, c > 0}+C2 · ({Subtract , c − 1}+ {Assign, c}) + {Assign,Outport} =

(C2 + 1) · 2 + C2 · (4 + 1) + 1 = 7 · C2 + 3

The maximum width Wmax

b1
is achieved if C2 has the value 77 when the code section begins. This

happens when I1 < I2. The maximum pulse width is then:

Wmax

b1
= 7 · 77 + 3 = 542 µs

The minimum width Wmin

b1
is achieved if C2 has the value 61 when the code section begins. This

happens when either I1 = I2 or I1 > I2. The minimum pulse width is then:

Wmin

b1
= 7 · 61 + 3 = 430 µs

Answer: The minimum width of the pulse on bit b1 is W
min

b1
= 430 µs, which fulfills the minimum-

width constraint 400 µs.

b) The width of the pulse on bit b0 on the output port consists of two parts. We derived the latter part
since the program code that affects the width of that part is the same as in sub-problem a).

The section of the program code that affects the first part, Wb0a
, of the width of the pulse on bit

b0 on the output port is:

while (c > 0)

c = c - 1;

if (d1 < d2)

c = 77;

else

c = 61;

Outport = 0x03; // start pulse on bit 1 (positive flank)

Let C1 be the value of variable c when this code section begins. The logical condition of the while
statement will then be evaluated C1 + 1 times, and the body of the while loop will be executed
C1 times. The pulse width Wb0a

is then:

Wb0a
= (C1 + 1) · {Compare, c > 0}+ C1 · ({Subtract , c − 1}+ {Assign, c})+

{Compare, d1 < d2}+max({Assign, c}, {Assign, c}) + {Assign,Outport} =

(C1 + 1) · 2 + C1 · (4 + 1) + 2 +max(1, 1) + 1 = 7 · C1 + 6



The maximum width of the first part, Wmax

b0a
, is achieved if C1 has the value 47 when the code

section begins. This happens when I1 = I2:

Wmax

b0a
= 7 · 47 + 6 = 335 µs

The minimum width of the first part, Wmin

b0a
,is achieved if C1 has the value 31 when the code

section begins. This happens when either I1 < I2 or I1 > I2:

Wmin

b0a
= 7 · 31 + 6 = 223 µs

It is now possible to calculate the total pulse width, Wb0
, of the pulse on bit b0 on the output

port. Depending on how the if statements affect the number of iterations of the while loops we
need to analyze three cases, namely I1 < I2, I1 = I2 and I1 > I2:

I1 < I2: Pulse width Wb0
= Wmin

b0a
+Wmax

b1
= 223 + 542 = 765 µs.

I1 = I2: Pulse width Wb0
= Wmax

b0a
+Wmin

b1
= 335 + 430 = 765 µs.

I1 > I2: Pulse width Wb0
= Wmin

b0a
+Wmin

b1
= 223 + 430 = 653 µs.

Answer: The maximum width of the pulse on bit b0 is W
max

b0
= 765 µs, which fulfills the maximum-

width constraint 800 µs.

Note: The analysis above shows that the combination Wmax

b0a
+Wmax

b1
= 335 + 542 = 877 never

occurs. The reason for this is that the conditions I1 = I2 and I1 < I2 would have to be true at the
same time, which is impossible. The scenario of assignments C1 = 47 and C2 = 77 being valid at
the same time is thus a false path in the program code.

c) With the given values, I1 = −121 and I2 = 93, the pulse widths for the case I1 < I2 apply:

Wb1
= 542 µs

Wb0
= 765 µs



PROBLEM 4

a) Critical region is called via a SYNC statement:

#include "TinyTimber.h"

typedef struct {

Object super;

char whoami;

int deadline;

} Task;

Task T1 = { initObject(), ’1’, 650 };

Task T2 = { initObject(), ’2’, 950 };

Task T3 = { initObject(), ’3’, 800 };

void Critical(Task*, int);

void Non_Critical(Task *self, int unused) {

SYNC(self, Critical, 0);

if (self->whoami == ’1’) {

// TODO: insert TinyTimber code

BEFORE(USEC(T2.deadline), &T2, Non_Critical, 0);

}

if (self->whoami == ’2’) {

// TODO: insert TinyTimber code

BEFORE(USEC(T3.deadline), &T3, Non_Critical, 0);

}

if (self->whoami == ’3’) {

// TODO: insert TinyTimber code

SEND(USEC(1000), USEC(T1.deadline), &T1, Non_Critical, 0); // restart loop

}

}

void Critical(Task *self, int unused) {

Action250(); // Do critical work for 250 microseconds

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(T1.deadline), &T1, Non_Critical, 0);

}

main() {

return TINYTIMBER(&T1, kickoff, 0);

}



b) Access to the critical region is handled by means of a set of semaphores:

#include "TinyTimber.h"

#include "semaphore.h"

Semaphore Sem1 = { initObject(), 1, 0 }; // TODO: set initial semaphore value

Semaphore Sem2 = { initObject(), 0, 0 }; // TODO: set initial semaphore value

Semaphore Sem3 = { initObject(), 0, 0 }; // TODO: set initial semaphore value

typedef struct {

Object super;

char whoami;

int deadline;

CallBlock cb; // where call-back information is stored

} Task;

Task T1 = { initObject(), ’1’, 650, initCallBlock() };

Task T2 = { initObject(), ’2’, 950, initCallBlock() };

Task T3 = { initObject(), ’3’, 800, initCallBlock() };

void Critical(Task*, int);

void Non_Critical(Task *self, int unused) {

self->cb.obj = (Object *) self; // provide call-back information

self->cb.meth = (Method) Critical;

if (self->whoami == ’1’)

ASYNC(&Sem1, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

if (self->whoami == ’2’)

ASYNC(&Sem2, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

if (self->whoami == ’3’)

ASYNC(&Sem3, Wait, (int) &self->cb ); // TODO: select semaphore to acquire

}

void Critical(Task *self, int unused) {

Action250(); // Do critical work for 250 microseconds

if (self->whoami == ’1’)

SYNC(&Sem2, Signal, 0); // TODO: select semaphore to release

if (self->whoami == ’2’)

SYNC(&Sem3, Signal, 0); // TODO: select semaphore to release

if (self->whoami == ’3’)

SYNC(&Sem1, Signal, 0); // TODO: select semaphore to release

SEND(USEC(1000), USEC(self->deadline), self, Non_Critical, 0); // restart loop

}

void kickoff(TaskObj *self, int u) {

BEFORE(USEC(T1.deadline), &T1, Non_Critical, 0);

BEFORE(USEC(T2.deadline), &T2, Non_Critical, 0);

BEFORE(USEC(T3.deadline), &T3, Non_Critical, 0);

}

main() {

return TINYTIMBER(&T1, kickoff, 0);

}



PROBLEM 5

a) The utilization-based test cannot be used since it does not apply to all tasks that Di = Ti.

b) Perform processor-demand analysis:

First, determine LCM of the task periods: LCM{T1, T2, T3} = LCM{4, 10, 20} = 20.

Then, derive the set K of control points: K1 = {4, 8, 12, 16, 20}, K2 = {18} and K3 = {3, 13}
which gives us K = K1 ∪K2 ∪K3 = {3, 4, 8, 12, 13, 16, 18, 20}.

Schedulability analysis now gives us:

L NL

1 · C1 NL

2 · C2 NL

3 · C3 CP (0, L) CP (0, L) ≤ L

3 (⌊ (3−4)
4

⌋+ 1) · 3 = 0 (⌊ (3−18)
20

⌋+ 1) · 2 = 0 (⌊ (3−3)
10

⌋+ 1) · 1 = 1 1 OK

4 (⌊ (4−4)
4

⌋+ 1) · 3 = 3 (⌊ (4−18)
20

⌋+ 1) · 2 = 0 (⌊ (4−3)
10

⌋+ 1) · 1 = 1 4 OK

8 (⌊ (8−4)
4

⌋+ 1) · 3 = 6 (⌊ (8−18)
20

⌋+ 1) · 2 = 0 (⌊ (8−3)
10

⌋+ 1) · 1 = 1 7 OK

12 (⌊ (12−4)
4

⌋+ 1) · 3 = 9 (⌊ (12−18)
20

⌋+ 1) · 2 = 0 (⌊ (12−3)
10

⌋+ 1) · 1 = 1 10 OK

13 (⌊ (13−4)
4

⌋+ 1) · 3 = 9 (⌊ (13−18)
20

⌋+ 1) · 2 = 0 (⌊ (13−3)
10

⌋+ 1) · 1 = 2 11 OK

16 (⌊ (16−4)
4

⌋+ 1) · 3 = 12 (⌊ (16−18)
20

⌋+ 1) · 2 = 0 (⌊ (16−3)
10

⌋+ 1) · 1 = 2 14 OK

18 (⌊ (18−4)
4

⌋+ 1) · 3 = 12 (⌊ (18−18)
20

⌋+ 1) · 2 = 2 (⌊ (18−3)
10

⌋+ 1) · 1 = 2 16 OK

20 (⌊ (20−4)
4

⌋+ 1) · 3 = 15 (⌊ (20−18)
20

⌋+ 1) · 2 = 2 (⌊ (20−3)
10

⌋+ 1) · 1 = 2 19 OK

The processor demand in each strategic time interval never exceeds the length of the interval, so
all tasks meet their deadlines.

c) From sub-problem a): LCM{4, 10, 20} = 20.

A simulation of the tasks using EDF scheduling in the interval [0,LCM ] gives the following timing
diagram.

0 10 20 t

✲

τ3
↑ ↑ ↑↓ ↓

τ2
↑ ↑↓

τ1
↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓

τ1
1

τ2
1

τ3
1

τ4
1

τ5
1

τ1
2

τ1
2

τ13 τ23



PROBLEM 6

a) The execution pattern in the timing diagram indicates that the two tasks have different periods.
Since RM scheduling is used the same task must have highest priority and therefore always execute
without preemption at each arrival. The timing diagram reveals that this task is τ1 and that its
period is T1 = 10. The period of τ2 must then be longer than 10 in order to follow the correct
priority assignment. The gap in the task execution between time points 24 and 28 indicates that
T2 = 14.

b) The utilization U = C1/T1 + C2/T2 = 4/10 + 6/14 ≈ 0.83. Note that the two tasks critically utilize
the processor even though U is significantly less than 1. This is a characteristic property of RM.

c) We generate a new schedule with task τ1, task τ2 (with new execution time) and the new task τ3
assuming T3 = 18:

0 10 20 30 40 t

✲

τ1
1

τ2
1

τ3
1

τ4
1

τ1
2

τ2
2

τ3
2

τ3
2

τ1
3

τ2
3

τ2
3

τ3
3

It is clear from the new schedule that the period of τ3 must be shorter than 18, since it is now
possible to slightly increase the execution time of any of the tasks without causing a deadline to
be missed (that is, the schedule does not critically utilize the processor).

We therefore generate a new schedule with assuming T3 = 17:

0 10 20 30 40 t

✲

τ1
1

τ2
1

τ3
1

τ4
1

τ1
2

τ2
2

τ3
2

τ3
2

τ1
3

τ2
3

τ3
3

The new schedule with T3 = 17 does critically utilize the processor, since it is no longer possible
to slightly increase the execution time of any of the tasks without causing the deadline for the first
instance of τ3 to be missed.

The utilization of this task set is U = 4/10 + 3/14 + 3/17 ≈ 0.79.

This task set with T3 = 17 is the solution to our problem, since any other task set will either
(i) critically utilize the processor but have a utilization higher than 0.79 (which happens when
10 ≤ T3 < 17) or (ii) make the schedule infeasible (which happens when T3 < 10).

d) What we have seen in sub-problems b) and c) are cases where task sets of size n = 2 and n = 3
critically utilize the processor at the utilizations U ≈ 0.83 and U ≈ 0.79, respectively. If we now
consider that we are using RM scheduling it is interesting to note that Liu & Layland’s feasibility
bound for RM, n(21/n − 1), evaluates to values that are very close to our derived values for n = 2
and n = 3. What we have done in this problem can therefore be seen as a simplified proof for Liu
& Layland’s feasibility test for systems with size n = 2 and n = 3. Of course, the original proof
uses stricter mathematical notation, more general value domains (non-integer values are allowed)
and also derives general expressions for the relations between task period and execution times. For
example, the task set for n = 3 that exactly corresponds to Liu & Layland’s proof is as follows:
T1 = 10, T2 = 21/3 · T1 ≈ 12.6, T3 = 22/3 · T1 ≈ 15.9, C1 = T2 − T1 ≈ 2.6, C2 = T3 − T2 ≈ 3.3,
C3 = 2T1 − T3 ≈ 4.1.

In conclusion, we could expect a similar correspondance to Liu & Layland’s feasibility bound when
we do the analysis after adding a fourth (a fifth, a sixth etc) task to the task set.



PROBLEM 7

a) The Oh & Baker utilization guarantee bound for partitioned scheduling on a multiprocessor system
is known to be no less than m(21/2 − 1), where m is the number of processors.

b) The utilization guarantee bound for any multiprocessor scheduling algorithm (partitioned or global)
with static task priorities can not exceed 0.5m, where m is the number of processors [Andersson
et al., 2001].

c) First we compute the utilization of the tasks.

Ci Ti Ui

τ1 10 50 0.2
τ2 ? 200 C2/200
τ3 8 20 0.4
τ4 7 10 0.7
τ5 5 30 0.167
τ6 40 100 0.4

Tasks in RMFF are assigned to the processors in their increasing order of periods. Therefore, the
order of assigning the tasks (from left to right) is as follows:

τ4, τ3, τ5, τ1, τ6, τ2

Since task τ2 will be assigned the last, we can follow the RMFF to assign the five tasks τ4, τ3, τ5, τ1, τ6
on m = 3 processor without knowing the value of C2.

Denote the three processors by µ1, µ2, and µ3.

By following the RMFF algorithm (Lecture 14), the five tasks are assigned as follows:

µ1 : τ4 total utilization=0.7

µ2 : τ3, τ5, τ1 total utilization= 0.4 + 0.167 + 0.2 = 0.767

µ3 : τ6 total utilization=0.4

Since µ3 is the most lightly loaded processor, task τ2 needs to be assigned to µ3 so that its C2 value
is maximized. Since U6 = 0.4 and the Liu and Layland bound for uniprocessor rate-monotonic
scheduling for two tasks is 2 · (2

1

2
−1), task τ2 must satisfy the following for µ3:

U6 + C2/T2 ≤ 2 · (2
1

2 − 1)

Since U6 = 0.4 and T2 = 200, we have

0.4 + C2/200 ≤ 2 · (2
1

2 − 1)

which implies C2 ≤ 85.685. Therefore, the maximum value of C2 is 85.685. Since C2 is an integer,
we have C2 = 85.

d) First we compute the utilization of the tasks.

Ci Ti Ui

τ1 10 50 0.2
τ2 2 ? 2/T2

τ3 8 20 0.4
τ4 7 10 0.7
τ5 50 300 0.167
τ6 20 100 0.2



Since T2 is an integer and C2 ≤ T2, we have to consider T2 = 2, 3, 4, ...

Using the RMFF algorithm (Lecture 14), we find that if T2 = 2 or T2 = 3, then all the tasks cannot
be assigned to m = 3 processors such that all the deadlines are met. If T2 = 4, then the order of
assigning the six tasks (from left to right) is as follows:

τ2, τ4, τ3, τ1, τ6, τ5

Denote the three processors by µ1, µ2, and µ3.

The utilization of the tasks, where T2 = 4, is given as follows

Ci Ti Ui

τ1 10 50 0.2
τ2 2 4 0.5
τ3 8 20 0.4
τ4 7 10 0.7
τ5 50 300 0.167
τ6 20 100 0.2

By following the RMFF algorithm (Lecture 14), the six tasks are assigned on m = 3 processors as
follows:

µ1 : τ2, τ1 total utilization=0.5 + 0.2

µ2 : τ4 total utilization= 0.7

µ3 : τ3, τ6, τ5 total utilization=0.4 + 0.2 + 167 = 0.767

The minimum value of T2 is 4.


