
Real-Time Systems

Solutions to final exam March 16, 2015

PROBLEM 1

a) True: TinyTimber’s AFTER() construct allows the programmer to call a method after a delay
relative to the calling method’s baseline, thereby eliminating any systematic time skew.

b) True: Too large over-estimation of the execution time of a task will leave less slack for the execution
of other tasks in the schedulability analysis.

c) False: The utilization guarantee bound for RM-US converges towards 33.3% as the number of
processors become very large.

d) False: The critical instant refers to a point in time when the response time of an analyzed task
is maximized. In single-processor system the critical instant occurs when the task arrives at the
same time as all tasks with higher priority.

e) False: By following certain guidelines of how to request resources it is possible to avoid deadlock.

f) True: For a sufficient feasibility test a positive answer guarantees that the task set is schedulable.
Therefore, if the task set is not schedulable the answer from the test must have been a “no”.

PROBLEM 2

a) See lecture notes for Lecture 4 (slide 24).

b) See lecture notes for Lecture 4 (slide 26).

c) See lecture notes for Lecture 4 (slide 27).

PROBLEM 3

a) The WCET of main is dependent on the WCET of functions “FuncA” and “FuncB”.

WCET of “main”:

WCET (main) = {Dec, F lag}+ {Dec, result}+ {Dec, P}+ {Dec,Q}+ {Assign,Q = −4}

+ {mod, (FuncA(Q)%2)}+ {call, FuncA(Q)}+WCET (FuncA(−4))

+ {Comp, (FuncA(Q)%2) == 0}+ {call, FuncA(Q)}+WCET (FuncA(−4)) + {sub, FuncA(Q)− 1}

+ {Assign, FuncA(Q)− 1}+ {abs, abs(Q)}+ {mod, P%abs(Q))}+ {Comp, P%abs(Q)) == 0}

+ {abs, abs(Q)}+ {call, FuncB(P, abs(Q))}+WCET (FuncB(23, 4)) + {Assign, FuncB(P, abs(Q))}

+ {comp, result! = 1}+ {assign, F lag = T }+ {return, result}

= 1 + 1 + 1 + 1 + 1 + 5 + 2 + 2 + 2 + 3 + 1 + 5 + 5 + 2 + 5 + 2 + 1 + 2 + 1 + 2 + 2 ∗WCET (FuncA(−4))

+WCET (FuncB(23, 4)) = 45 + 2 ∗WCET (FuncA(−4)) +WCET (FuncB(23, 4))



WCET of “FuncA”: There are two cases for calculating the WCET of FuncA:
Case(i) x == 1, Case(ii) x!=1.

Case(i)WCET (FuncA(x)) = {Comp, x == 1}+ {return, x} = 2 + 2 = 4

Case(ii)WCET (FuncA(x = −4)) = {Comp, x == 1}+ {abs, abs(x)}+ {abs, abs(x)}+ {sub, abs(x)− 1}

+ {call, FuncA(abs(x)− 1)}+WCET (FuncA(3)) + {mul, abs(x) ∗ FuncA(abs(x)− 1)}

+ {return, abs(x) ∗ FuncA(abs(x)− 1)} = 2+ 5 + 5 + 3 + 2 + 4 + 2 +WCET (FuncA(3))

= 23 +WCET (FuncA(3))

WCET (FuncA(x = 3)) = {Comp, x == 1}+ {abs, abs(x)}+ {abs, abs(x)}+ {sub, abs(x)− 1}

+ {call, FuncA(abs(x)− 1)}+WCET (FuncA(2)) + {mul, abs(x) ∗ FuncA(abs(x)− 1)}

+ {return, abs(x) ∗ FuncA(abs(x)− 1)} = 23 +WCET (FuncA(2))

WCET (FuncA(x = 2)) = {Comp, x == 1}+ {abs, abs(x)}+ {abs, abs(x)}+ {sub, abs(x)− 1}

+ {call, FuncA(abs(x)− 1)}+WCET (FuncA(1)) + {mul, abs(x) ∗ FuncA(abs(x)− 1)}

+ {return, abs(x) ∗ FuncA(abs(x)− 1)} = 23 +WCET (FuncA(1))

==>

WCET (FuncA(−4)) = 23 + 23 + 23 + 4 = 73

WCET of “FuncB”: There are two cases for calculating the WCET of FuncB:
Case(i) b == 0, Case(ii) b!=0.

Case(i)WCET (FuncB(a, b)) = {Comp, b == 0}+ {return, a} = 2 + 2 = 4

Case(ii)WCET (FuncB(a = 23, b = 4)) = {Comp, b == 0}+ {mod, (a%b)}+ {call, FuncB(b, a%b)}

+WCET (FuncB(4, 3)) + {return, FuncB(b, a%b)} = 11 +WCET (FuncB(4, 3))

WCET (FuncB(a = 4, b = 3)) = {Comp, b == 0}+ {mod, (a%b)}+ {call, FuncB(b, a%b)}

+WCET (FuncB(3, 1)) + {return, FuncB(b, a%b)} = 11 +WCET (FuncB(3, 1))

WCET (FuncB(a = 3, b = 1)) = {Comp, b == 0}+ {mod, (a%b)}+ {call, FuncB(b, a%b)}

+WCET (FuncB(1, 0)) + {return, FuncB(b, a%b)} = 11 +WCET (FuncB(1, 0))

==>

WCET (FuncB(23, 4)) = 11 + 11 + 11 + 4 = 37

WCET of “main”:

WCET (main) = 45 + 2 ∗WCET (FuncA(−4)) +WCET (FuncB(23, 4))

= 45 + 2 ∗ 73 + 37 = 228

The deadline is missed

b) There are 14 abs operations. The cost of each abs operation should be 3 µs so that the
deadline is met.



PROBLEM 4

a) The two design flaws are the following:

TaskObj C = { initObject() }; // separate object for background task

...

void T2(TaskObj *self, int u) {

...

SEND(USEC(200), USEC(50), self, T2, 0); // period of 200 us needed for 2500 Hz tone

}

...

void kickoff(TaskObj *self, int u) {

SEND(USEC(0), USEC(1300), &C, BG, 0); // separate object needed for background task

... // to allow T1 to produce a clean 1000 kHz tone

}

...

b) If shared data is stored within an object, TinyTimber guarantees that mutual exclusion applies for
the methods defined with the object if called with SYNC or ASYNC.

c) TinyTimber uses the Deadline Inheritance Protocol, combined with deadlock detection via the return
value of the SYNC call.

PROBLEM 5

We start by observing that task τ2 has a first arrival time that differs from that of the other tasks. This
means that the use of a utilization-based or response-time-based schedulability test may become overly
pessimistic IF there exists no point in time in the schedule where all tasks arrive at the same time. This,
in turn, could mean that, should the test fail, the task set could potentially still be schedulable.

Luckily, by observing the given periods and offsets, we can see that there does exist a point in time
where all tasks arrive at the same time, namely at t = 60 (where the arrivals of the 4th instance of τ2,
the 4th instance of τ3 and the 3rd instance of τ1 coincide). We can then use this as the critical instant
in our analysis.

Our first candidate method for schedulability analysis is Liu and Layland’s classic utilization-based test.
For three tasks, the schedulability bound is Ulub = 3(21/3 − 1) ≈ 0.780. Unfortunately, the accumulated
task utilization, U = 4/30+ 4/16 + 9/20 =≈ 0.833, exceeds the guarantee bound, and the test does not
provide any useful information.

We must, consequently, resort to response-time analysis. Since RM is used, the task priorities are
determined by the task periods. To that end, task τ2 has highest priority (shortest period) and process
τ1 has lowest priority.

We then calculate the response time of each task and compare it against the corresponding task deadline:

R2 = C2 = 4 < D2 = 16.

R3 = C3 + ⌈R3

T2

⌉ · C3. Assume that R0
3 = C3 = 9:



R1
3 = 9 + ⌈ 9

16
⌉ · 4 = 9 + 1 · 4 = 13

R2

3
= 9 + ⌈ 13

16
⌉ · 4 = 9 + 1 · 4 = 13 < D3 = 20

R1 = C1 + ⌈R1

T2

⌉ · C2 + ⌈R1

T3

⌉ · C3. Assume that R0

1 = C1 = 4:

R1
1 = 4 + ⌈ 4

16
⌉ · 4 + ⌈ 4

20
⌉ · 9 = 4 + 1 · 4 + 1 · 9 = 17

R2

1
= 4 + ⌈ 17

16
⌉ · 4 + ⌈ 17

20
⌉ · 9 = 4 + 2 · 4 + 1 · 9 = 21

R3
1 = 4 + ⌈ 21

16
⌉ · 4 + ⌈ 21

20
⌉ · 9 = 4 + 2 · 4 + 2 · 9 = 30

R4

1
= 4 + ⌈ 30

16
⌉ · 4 + ⌈ 30

20
⌉ · 9 = 4 + 2 · 4 + 2 · 9 = 30 ≤ D1 = 30

Conclusion: all tasks meet their deadlines!

PROBLEM 6

Since RM is used, the task priorities are determined by the task periods. To that end, with the original
task periods, task τ1 has highest priority (shortest period) and process τ3 has lowest priority.

a) Our first candidate method for schedulability analysis is Liu and Layland’s classic utilization-based
test. For three tasks, the schedulability bound is Ulub = 3(21/3 − 1) ≈ 0.780. Unfortunately, the
accumulated task utilization, U = 2/5+ 4/13+ 6/29 =≈ 0.915, exceeds the guarantee bound, and
the test does not provide any useful information.

We therefore calculate the response time of each task and compare it against the corresponding
task deadline (= period):

R1 = C1 = 2 < T1 = 5.

R2 = C2 + ⌈R2

T1

⌉ · C1. Assume that R0
2 = C2 + C1 = 4 + 2 = 6:

R1
2 = 4 + ⌈ 6

5
⌉ · 2 = 4 + 2 · 2 = 8

R2
2 = 4 + ⌈ 8

5
⌉ · 2 = 4 + 2 · 2 = 8 < T2 = 13

R3 = C3 + ⌈R3

T2

⌉ · C2 + ⌈R3

T1

⌉ · C1. Assume that R0

3
= C3 + C2 + C1 = 6 + 4 + 2 = 12:

R1

3
= 6 + ⌈ 12

13
⌉ · 4 + ⌈ 12

5
⌉ · 2 = 6 + 1 · 4 + 3 · 2 = 6 + 4 + 6 = 16

R2

3
= 6 + ⌈ 16

13
⌉ · 4 + ⌈ 16

5
⌉ · 2 = 6 + 2 · 4 + 4 · 2 = 6 + 8 + 8 = 22

R3

3
= 6 + ⌈ 22

13
⌉ · 4 + ⌈ 22

5
⌉ · 2 = 6 + 2 · 4 + 5 · 2 = 24

R4

3
= 6 + ⌈ 24

13
⌉ · 4 + ⌈ 24

5
⌉ · 2 = 6 + 2 · 4 + 5 · 2 = 24 ≤ T3 = 29

Conclusion: all tasks meet their deadlines!

b) An obvious version of the task set that has more appropriate periods (within the given limits) is
where T2 = 15 and T3 = 30. Since the original task set is schedulable, and neither the new T2 nor
the new T3 is shorter than the original period, the new task set must also be schedulable. The
length of this (repeatable) schedule is 30 time units, and the start and stop times for the tasks are
as follows:

τ1: 6 instances: (0,2), (5,7), (10,12), (15,17), (20,22) and (25,27)

τ2: 2 instances: (2,5)(7,8) and (17,20)(22,23)

τ3: 1 instance: (8,10)(12,15)(23,24)

There is also a version of the task set with T2 = 10 and T3 = 30 that, despite a total task utilization
of 100%, is schedulable. The length of this (repeatable) schedule is also 30 time units, but has one
more instance of τ2 and thus less compact.



PROBLEM 7

a) See lecture notes for Lecture 14 (slide 14-17).

b) See lecture notes for Lecture 14 (slide 27-29).

c) First we compute the utilization of the tasks.

Ci Ti Ui

τ1 160 200 160/200 = 0.8
τ2 10 25 10/25 = 0.4
τ3 10 40 10/40 = 0.25
τ4 5 20 160/200 = 0.25
τ5 10 ? 10/T5

τ6 5 10 5/10 = 0.5

Task τ1, τ2 and τ6 must be assigned to different processors. None of these two tasks can be allo-
cated on the same processor because the Liu and Layland bound for uniprocessor rate-monotonic
scheduling for two tasks is 2 · (2

1

2
−1) ≈ 0.8284.

Task τ3 or task τ4 cannot be allocated to the processor on which task τ1 is assigned. Since
U3 = 0.25 and U4 = 0.25, allocating τ3 or τ4 on a processor where τ1 is assigned would result in
total utilization on that processor larger than 1.

Assigning both τ3 and τ4 with task τ2 on the same processor would result in total utilization
on that processor equal to U2 + U3 + U4 = 0.4 + 0.25 + 0.25 = 0.9. Assigning both τ3 and τ4
with task τ6 on the same processor would result in total utilization on that processor equal to
U3 + U4 + U6 = 0.25 + 0.25 + 0.5 = 1.0. Liu and Layland bound for uniprocessor rate-monotonic
scheduling for three tasks is 3 · (2

1

3
−1) ≈ 0.7797. Therefore, both τ3 and τ4 cannot be allocated to

any of the processors on which task τ2 or task τ6 is assigned. Only one of the τ3 and τ4 can be
allocated to the processor on which τ2 or τ6 is assigned.

If the period of task T5 ≤ 40, there is no processor on which task τ5 can be allocated. Therefore,
T5 > 40. Therefore, τ2, τ3, τ4, τ6 are allocated before task τ5 is allocated (RMFF assigns task with
smaller period before assigning task with larger period). Consequently, τ4 and τ6 is allocated to
the first processor; τ2 and τ3 is allocated to the second processors; and, τ1 is allocated to the third
processors.

The period of task τ5 will be smallest when allocated to the second processor since this processor
has lowest utilization. All the tasks τ2, τ3, τ5 will meet their deadlines if U2+U3+

10

T5

≤ 3 · (2
1

3 −1).
This implies

10

3 · (2
1

3 − 1)− U2 − U3

≤ T5

or,
10

3 · (2
1

3 − 1)− 0.4− 0.25
≤ T5

(for smallest integer T5)

T5 =

⌈

10

3 · (2
1

3 − 1)− 0.4− 0.25

⌉

= ⌈77.06⌉ = 78


