
Chalmers University of Technology and Gothenburg University

Operating Systems
EDA093, DIT 401

Exam 2019-01-07

Date, Time, Place: Monday 2019/01/07, 08.30-12.30, Samh̊allsbyggnad

Course Responsible:
Vincenzo Gulisano (031 772 61 47),
Marina Papatriantafilou (031 772 54 13)

Auxiliary material: You may have with you
- An English-Swedish, Swedish-English dictionary.
- No other books, notes, calculators, etc.

Grade-scale (”Betygsgränser”):
CTH: 3:a 30-39 p, 4:a 40-49 p, 5:a 50-60 p
GU: Godkänd 30-49p, Väl godkänd 50-60 p

Exam review (“Granskningstid”):
Will be announced after the exam.

Instructions

• Do not forget to write your personal number, if you are a GU or CTH
student and at which program (”linje”).

• Start answering each assignment on a new page; number the pages and
use only one side of each sheet of paper.

• Write in a clear manner and motivate (explain, justify) your answers.
If it is not clear what is written, your answer will be considered wrong. If
it is not explained/justified, even a correct answer will get significantly
lower (possibly zero) marking.

• If you make any assumptions in answering any item, do not forget to
clearly state what you assume.

• The exam is organized in groups of questions. The credit for each group
of questions is mentioned in the beginning of the respective group. Unless
otherwise stated, all questions in a group have equal weight.

• Answer questions in English, if possible. If you have large difficulty with
that and you think that your grade can be affected, feel free to write in
Swedish.

Good luck !!!!



1. (12 p)

(a) (4 p) If the serial portion of a program is 0.25, find the number of cores
needed to run such program in parallel and achieve a speed-up of 25.

[HINT: cannot go more than or equal to 4 times faster.]

(b) (4 p) Motivate why a certain application would leverage both multiple
processes as well as multiple threads to run in parallel and concurrently
in a multi-core architecture.

[HINT: e.g. for modularity (processes) as well as shared state (threads)
for some functionality.]

(c) (4 p) What happens to the threads of a process when exec is called?
Why?

[HINT: Threads are destroyed.]

2. (12 p)

(a) (4 p) Provide examples of how virtual memory with paging decouples
the physical view of memory from the logical one.

[HINT: e.g. addresses starting at 0. Solving external fragmentation by
means of pages. Loading only parts of a program. Running a program
even if such program cannot fit entirely in memory...]

(b) (4 p) Discuss a scenario in which a certain process can experience page
faults because of other processes.

[HINT: When pages of such process are replaced to load other processes’
pages (global replacement).]

(c) (4 p) How does copy-on-write speed up the execution of a fork call?

[HINT: By skipping the copy of pages that can be later read by the new
process (or replaced by exec later on).]

3. (12 p)

(a) (4 p) Explain what Direct Memory Access is and why it can improve
CPU utilization.

[HINT: Please refer to the slides of the corresponding lecture (I/O Sys-
tem)]

(b) (4 p) Discuss why the timer interrupt is a key component of a modern
OS.

[HINT: e.g., marking the end of each quantum to support the scheduler.]

(c) (4 p) Discuss how the information is stored on disk and accessed by the
hardware of a computer during the booting process when multiple OSes
are installed.

[HINT: Please refer to the slides of the corresponding lecture (File Sys-
tems). In this case a boot loader is needed.]

4. (12 p)

(a) ( 4p) Explain the role of (i) synchronization and (ii) memory organiza-
tion, in making scheduling in multiprocessor/multicore systems a more
complex problem compared to single-processor scheduling.

[HINT: Both factors introduce issues making CPU utilization less in-
line with goals for progress of threads and of the system in general.
Threads that synchronize frequently can benefit from being dispatched
simultaneously, making it sometimes less important to interleave threads

1



of different processes in the same CPU. Migration of state in NUMA
systems can introduce more overhead than savings when trying to share
load (i.e. processor affinity can be beneficial sometimes, even if there
exist underutilized CPUs)]

(b) (4 p) Consider three periodic tasks, T1, T2 and T3, with periods and
processing requirements of p1 = 60, t1 = 20, p2 = 30, t2 = 5, p3 = 120,
and t3 = 40, respectively. (i) Can they be scheduled using rate-monotonic
scheduling? (ii) Can they be scheduled using the earliest-deadline-first
(EDF) scheduling? Explain carefully why or why not in both questions.

[HINT: RM cannot do it; apply it and show with Gantt chart that some
task misses its deadline. EDF can do it; we know EDF can schedule all
task sets where the sum of ti/pi does not exceed 1 and this is the case
here.]

(c) (4 p) The regressive round-robin scheduler assigns each schedulable unit
(i.e. each process or thread; for simplicity we only refer to threads in the
rest of this question) a time quantum and a priority. The initial value of
a time quantum and priority are fixed, e.g. 50 msec and level 0. Threads
are dispatched in a round robin fashion, starting from the highest prior-
ities and moving to the lower ones, with each thread being allocated the
CPU for a time interval of length at most its time quantum. Every time
a dispatched thread uses its entire time quantum (i.e. does not block for
I/O), its time quantum is increased (by e.g. 10 msec) and its priority
level is boosted, up to a maximum of e.g. 100 msec and level 5. When a
process blocks before using its entire time quantum, the latter is reduced
(by e.g. 5 msec), but its priority remains the same. What data structure
can be used for the ready queue? What type of threads (CPU-bound
or I/O-bound) does this scheduler favor? Explain both parts of your
answer.

[HINT: CPU bound threads get higher priority and higher quantum,
hence they are favoured. Multilevel queue or sorted linked list can be
used, sorting threads after their priority.]

5. (12 p)

(a) (4 p) Servers can be designed to limit the number of open connections.
For example, a server may wish to have only N active socket connections
at any point in time. As soon as N connections are made, the server will
not accept a new incoming connection until an existing one is released.
Describe how semaphores can be used to limit the number of concurrent
connections; use pseudocode and also explain your answer.

[HINT: General semaphore S, initialized to N; execute wait(S) and sig-
nal(s) before and after the connection between each client (socket) and
server. ]

(b) (4 p) Show a method that solves the critical section problem for arbi-
trary number of threads using the atomic TestAndSet instruction that
is available in several processor architectures. Use pseudocode in the de-
scription and argue about the properties of the solution, with respect to
mutual exclusion, progress and fairness. (It is not necessary to describe
a solution that guarantees fairness in this question, but if you can, of
course it is ok).

[HINT: Pseudocode slides 17 (or 46, with fairness) in synchronization
lecture. Argumentation as for the mutual exclusion algorithm by Peter-
son.]

2



(c) (4 p)
(a) Name and describe the four necessary conditions for a deadlock to
occur among threads/processes, in the context of allocation of reusable
resources.
(b) How does the knowledge of these conditions help in preventing dead-
locks? Explain carefully your answer.

[HINT: Mutual exclusion, circular wait, no preemption, hold and wait.
If one of them is not possible in a RA method, then deadlock is pre-
vented.]

3


