Chalmers University of Technology and Gothenburg University

Operating Systems
EDA092, DIT 400
Ezxam 2017-08-15

Date, Time, Place: Tuesday 2017/08/15, 14.00-18.00, Maskin-salar

Course Responsible: Vincenzo Gulisano (031 772 61 47), Marina Papatriantafilou

(031 772 54 13)

Auziliary material: You may have with you
- An English-Swedish, Swedish-English dictionary.
- No other books, notes, calculators, PDA’s etc.

Grade-scale (”Betygsgranser”):
CTH: 3:a 30-39 p, 4:a 40-49 p, 5:a 50-60 p
GU: Godkénd 30-49p, Vil godkénd 50-60 p

Ezam review (“Granskningstid”):
Will be announced after the exam.

Instructions

Do not forget to write your personal number, if you are a GU or CTH
student and at which program (”linje”).

Start answering each assignment on a new page; number the pages and
use only one side of each sheet of paper.

Write in a clear manner and motivate (explain, justify) your answers.
If it is not clear what is written, your answer will be considered wrong. If
it is not explained/justified, even a correct answer will get significantly
lower (possibly zero) marking.

If you make any assumptions in answering any item, do not forget to
clearly state what you assume.

The exam is organized in groups of questions. The credit for each group
of questions is mentioned in the beginning of the respective group. Unless
otherwise stated, all questions in a group have equal weight.

Answer questions in English, if possible. If you have large difficulty with
that and you think that your grade can be affected, feel free to write in
Swedish.

Good luck !!!!

1. (12 p)

(a)

(4 p) Please describe in detail what happens when the following code is
executed:

int main() {
pid_t pidl, pid2, pid3;
pidl = getpid();
pid2 = fork();
pid3 = getpid();
if (pid3==pid1) {
printf("A");

}
}

HINT: After fork (assuming it works correctly) pidl and pid3
are the same for the parent but not for the child. Only the
parent prints A.

(4 p) Describe the similarities and the differences between a context
switch between two processes and between a process and an interrupt
handler.

HINT: Both will require storing of the registers and other
information for the running process before it is switched. An-
swering the interrupt and running a different process, never-
theless, have not the same priority and are not done with the
same efficiency. The interrupt can be associated with an han-
dler routing and the switching to it is optimized (based on the
interrupt number). The new running process, on the hand
hand, could be decided after running a scheduler and is not as
optimized as the interrupt handler.

(4 p) The manual for the fork call says “Under Linuz, fork() is imple-
mented using copy-on-write pages, so the only penalty that it incurs is the
time and memory required to duplicate the parent’s page tables.” What
else could be duplicated (but is not)? Why is the page table copied
instead of shared between the processes?

HINT: The pages themselves. Multiple processes can be spawn
with COW and have different modified pages, hence they need
different page table copies.

2. (12 p)

(a)

(4 p) The processes A, B and C access their pages in the following order:
A:123523761237814
B:123491869231252
C:191823762249843
Assuming a working set window of 14 page references, compute the total
demand of frames of the processes (for the given window size) and check
if trashing is occurring given that 22 frames are available.
HINT: number of pages accessed by each process over the last
14 accesses: 7 and 8 for A, 8 and 8 for B and 8 and 8 for C.
Sums = 23 and 24, so trashing is occurring.
(4 p) How does demand paging work and why is it beneficial?

HINT: Load page only when requested. Less pages loaded
—; more space / more processes loaded, faster loading of pro-
cesses.

()

(4 p) Suppose a process has size of 200 bytes and the frame size (for
paging) is set to 2* bytes. Compute the size in bits of the page table if
the frame addressing requires 1 byte and dirty bits are not used.
HINT: pages needed: 13. page table = 13 * (8 + 1) = 117
(41 because of valid/invalid) .

3. (12 p)

(a)

(c)

(4 p) What is a free space bitmap? Suppose the block size for a disk of
1GB is 4KB. How many blocks would be used to maintain the bitmap
for the entire disk?

HINT: a bitmap in which bit i specifies whether block i is free
or not. number of blocks = 262144. Bytes to store the bitmap
= 32768. Blocks to store the bitmap = 8.

(4 p) Consider a file system that uses i-nodes to represent files. Disk
blocks are 8-KB in size and a pointer to a disk block requires 4 bytes.
This file system has 12 direct disk blocks plus single, double, and triple
indirect disk blocks. Suppose that, when possible, files are stored entirely
in the disk block pointers of the i-node rather than the disk blocks. What
would be the maximum size of a file that can be entirely stored in a i-
node?

HINT: (12+1+141)*4 bytes = 60 bytes. (To be really precise,
you should also use some space to indicate whether the content
of the pointers are real pointers or data, but that’s OK).

(4 p) What is the relocation register? Does it need to be changed during
a context switch? Discuss why.

HINT: Base to be summed to address to get real address. Yes,
because each process has its own space.

4. (12 p)

(a)

(6p) Consider a system where you know that the offered load consists of
periodic real-time tasks and interactive processes. As a system designer
you are able to decide on the scheduling policy to use. Discuss the design
of two scheduling policy alternatives suitable for such a system. (i.e.,
discuss how you would think in order to decide on a policy to use, the
advantages and problems of the alternatives you are considering, how
these methods could be implemented, whether you could make use of
additional information).

HINT: one possibility: use EDF, with dedlines for interactive
jobs = time of issue 4+ maximum reasonable response time for
the user (if available)
other: maintain 2 queues, one for RT, one for interactive, serve
the RT first with EDF or RM, when empty move to interac-
tive. If use EDF in the RT and the offered RT load (sum[(exec-
time) /period] is less than 1, there will be time left for interac-
tive ones, else, there may be starvation to interactive jobs.
alternative: insert the interactive jobs with fixed priorities in
the same queue as the RT tasks. fixing those priorities would
need knowledge of how critical it would be to miss an interactive
process (i.e. to let it starve, or to eliminate it from the queue
in case of congestion) and what are the tolerated response-time
margings for these processes.

(b)

(6 p) An issue in multiprocessor scheduling is how to decide about the
sharing of the ready queue(s). Describe two common approaches and
argue about their advantages and disadvantages.

HINT:shared versus per-processor; can facilitate loab lanacing
but can become hotspot + no-processor-affinity can result in
large migration costs

5. (12 p)

(a)

(6p) Design a solution to the mutual exclusion problem for arbitrary
number of processes/threads in a system with SPARC processors, where
the following atomic instruction, called Compare-and-Swap, is available
by the hardware. Discuss carefully the properties of your solution.

int CAS(int *addr, int old, int new)
if (xaddr == o0ld) { *addr = new; return(SUCCESS) }
else return(FAILURE)

Answer sketch: One can use CAS to immitate the behaviour
of test-and-set or exchange instructions and design a solution
similar to the ones we discussed in that context. the solution
ensures mutual exclusion, no deadlock, but may suffer from
starvation. A solution free from starvation employs an idea as
in the n-process mutex-algo by Peterson. Answers along the
first direction that discuss the starvation possibility, are also
accepted as fully correct.

(4p) Consider the following suggested solution to the readers-writers
problem. Does it correctly solve the problem? Argue why or why not.

int readcount; // (initial value = 0)
semaphore w; // (initial value = 1)

//READER

readcount++;

if (readcount == 1)
wait (w);

// reading is performed

readcount—-;

if (readcount == 0)

signal(w);

//WRITER

wait(w);

// writing is performed
signal(w);

Answer sketch: readcount is not protected when ++ or —,
hence a race consition can cause the if statement to be false
even through there can be eg. 2 readers and a writer and thus
cause violation of mutual exclusion between the readers and
the writer.

(2p)What is the meaning of the term “busy-waiting”? What other kinds
of waiting can there be in an operating system?
Answer sketch: spinning + block

