Exam: DAT440 / DIT471 Advanced topics in machine learning lp4 VT23

Examiner and teacher: Morteza Haghir Chehreghani, morteza.chehreghani@chalmers.se

- The final exam is in the form of a digital exam on 30 May 2023.
- The exam will take four hours.
- There are in total 34 questions: Most of the questions have one point/mark, and there are few questions with two or three points/marks. The mark of each question is specified.
- The total score is 40, which will be normalized to 60 and then the final grade will be computed as described in the course canvas page.
- The exam must be done individually, and you cannot use cheat-sheet or any other resources.
- You can have an ordinary calculator for the exam.
- The exam consists of only multiple-choice questions, where for each question, at least one option (and possibly more than one) can be correct. The correct number of options is specified for each question.
- There will be no negative score for wrong answers, but you need to choose all (and only) the correct answers to get the mark/score of the question.
- The examiner will visit the exam premises on two occasions to answer the clarification questions: i) one hour after the start of the exam, and ii) when an hour of the exam remains.
- You do not need to show your calculations for the questions.
- **1** Consider a stochastic multi-armed bandit problem with mean reward $\mu(a)$ for each arm $a \in A$, where A is the set of arms, a^* is the optimal arm, a_t is the arm selected at time t , T is the time horizon, $\mathbb P$ is a prior distribution over problem instances and $\cal J$ is a problem instance. Choose the correct statements about the Bayesian regret $BR(T)$ in this kind of problem.

[Number of correct options: 1]

$$
\Box\textrm{ BR}(T)=\mathbb{E}[R(T)|\mathcal{J}]
$$

- $\text{BR}(T)=\mu(a^*)\cdot T-\mathbb{E}_{\mathcal{J}\sim \mathbb{P}}\Bigl[\sum_{t\in[T]}\mu(a_t)\Bigr]$
- $\Box \text{ BR}(T) = \mathbb{E}_{\mathcal{J} \sim \mathbb{P}}[\mu(a^*) \cdot T \sum_{a \in A} \mu(a)]$
- $\mathbb{E} \text{BR}(T) = \mathbb{E}_{\mathcal{J} \sim \mathbb{P}}[\mathbb{E}[R(T)|\mathcal{J}]]$

.

2 Consider a stochastic K -armed bandit problem with mean reward $\mu(a)$ for each arm $a \in A$, where A is the set of arms and $|{\cal A}|=K$. We define, for an arbitrary arm $\hat a\in {\cal A}$, the observed average reward $\bar\mu_t(\hat a)$ of arm $\hat a$ before round t. Moreover, $r_t(\hat{a})$ is the confidence radius at round t for arm \hat{a} , and $\text{UCB}_t(\hat{a})$ and $\text{LCB}_t(\hat{a})$ are the upper and lower confidence bounds, respectively, of arm \hat{a} at round t . Choose the correct statements about the confidence bounds/radius.

[Number of correct options: 2]

- \Box Under bad event, $\text{LCB}_t(a) < \text{LCB}_t(a')$ for $a, a' \in \mathcal{A}$, $a \neq a'$ always indicates $\mu(a) < \mu(a')$.
- \heartsuit The confidence radius is a random variable because of randomness in the rewards and algorithm. \heartsuit
- Under the event $\mathcal{E}:=\{\forall a\in \mathcal{A}\forall t\quad|\bar\mu_t(a)-\mu(a)|\leq r_t(a)\}$, $\mathrm{UCB}_t(a)$ provides a upper bound for
	- If $UCB_t(a) < UCB_t(a')$ for arms $a, a' \in A$ where $a \neq a'$, the mean reward of arm a' is larger than the mean reward of arm a .

Rätt. 1 av 1 poäng.

- **3** Consider the following game that proceeds over n rounds: In each round $t \in \{1, ..., n\}$, you choose either to play or do nothing. If you do nothing, then your reward is $X_t = 0$. If you play, then your reward is $X_t = 1$ with probability p and $X_t = -1$ otherwise. In terms of regret, what is the optimal way of choosing actions, i.e., the best algorithm, when p is known? [Number of correct options: 1]
	- Always choose to do nothing.
	- Always choose to play.
	- If $p > 0.5$, choose to do nothing. Otherwise, choose to play.
	- If $p > 0.5$, choose to play. Otherwise, choose to do nothing.

Rätt. 1 av 1 poäng.

- **4** Choose the correct statements about the regret in bandit problems. [Number of correct options: 2]
	- \Box It is a random variables since the optimal arm in each round is not necessarily unique.
	- \Box It is a random variable because of randomness in the rewards.
	- \blacksquare It is a random variable because of randomness in the the algorithm.
	- \Box It is a random variable because of randomness in the optimal arm in each round.

6

5 Consider a stochastic K -armed bandit problem with mean reward $\mu(a)$ for each arm $a \in A$, where A is the set of arms and $|\mathcal{A}| = K$. Choose the correct statements about the regret bound

 $\mathbb{E}[R(T)] \leq O(\log T) \left| \sum_{\text{arms } a \text{ with } \mu(a) < \mu(a^*)} \frac{1}{\mu(a^*) - \mu(a)} \right|$, where a^* is the optimal arm and T is the time horizon. [Number of correct options: 2]

 \blacksquare It is instance-dependent.

- \triangledown Expectation is taken over the reward distribution and any randomness in the algorithm.
- \Box It is instance-independent.
- \Box It is a Bayesian regret.

Rätt. 1 av 1 poäng.

Average observed rewards and confidence intervals for each arm

Consider a stochastic bandit problem with a set of arms A , and $|A|=10$. For an arbitrary round, the figure displays the average reward $\bar{\mu}(a)$ up to this round for every arm $a \in \mathcal{A}$ and corresponding confidence intervals. Which arm(s) will algorithm UCB1 and Greedy choose in this round?

Algorithm UCB1 will choose		Arm 3	(Arm 9, Arm 5, Arm 4, Arm 10, Arm 1, Arm 7, Arm 3, Arm 6,	
Arm 8, Arm 2).				
Greedy will choose	Arm 7		Arm 7, Arm 5, Arm 4, Arm 10, Arm 6, Arm 2, Arm 9, Arm 1, Arm 3,	
Arm 8).				

7

- 1 Exploration phase: try each arm N times;
- 2 Select the arm \hat{a} with the highest average reward (break ties arbitrarily);
- 3 Exploitation phase: play arm \hat{a} in all remaining rounds.

Algorithm 1.1: Explore-First with parameter N .

Consider a stochastic K -armed bandit problem with a set of arms ${\cal A}$, and $|{\cal A}|=K$. Assume rewards are bounded in $[0,1]$ and a total number of rounds T . Choose the correct statements about the Explore-First algorithm in bandit problems.

[Number of correct options: 2]

- \Box If $K \gg T$, then the bad event can be always neglected.
- \Box The regret is constant in the exploitation phase.
- The cumulative regret in the exploration phase is upper bounded proportional to the number of arms \blacktriangledown the number of times N that each arm is tried in the exploration phase.
- \heartsuit Hoeffding's inequality can be used to define the clean event of the exploration phase.

Rätt. 1 av 1 poäng.

8

Consider a Bayesian K -armed bandit problem with a set of arms $\cal A$, $|A|=K$. Let $\,r_t\sim {\cal D}_{\mu(a_t)}$ denote the reward of arm $a_t \in A$ chosen at round t , where the reward distribution $\mathcal{D}_{\mu(a_t)}$ is specified by its expected reward $\mu(a_t)$. Let $\mathbb{P}_H(\tilde\mu):=\Pr[\mu=\tilde\mu|H_t=H]$ denote the Bayesian posterior distribution after round t . Let H be a feasible t -history that is a concatenation of some feasible $(t-1)$ -history H^\prime and an action-reward pair (a,r) , i.e., . For a H -consistent algorithm, $\pi(a) = \Pr |a_t=a|H_{t-1}=H'|$ is the probability that arm $a \in \mathcal{A}$ is chosen at round t given the history $H'.$

Assume that arm $a \in \mathcal{A}$ is chosen in round t and, subsequently, the reward r is observed. For a mean reward vector $\tilde{\mu} \in [0,1]^K$, choose the correct statements about the joint distribution $\Pr[\mu = \tilde{\mu}, H_t = H].$

[Number of correct options: 2]

$$
\begin{aligned}\n\mathbb{E} \Pr[\mu = \tilde{\mu}, H_t = H] &= \Pr[H_{t-1} = H'] \times \Pr[\mu = \tilde{\mu}, (a_t, r_t) = (a, r)|H_{t-1} = H] \\
\mathbb{E} \Pr[\mu = \tilde{\mu}, H_t = H] &= \Pr[H_{t-1} = H'] \times \mathbb{P}_{H'}(\tilde{\mu}) \times \pi(a) \\
\mathbb{E} \Pr[\mu = \tilde{\mu}, H_t = H] &= \Pr[H_{t-1} = H'] \times \Pr[(a_t, r_t) = (a, r)|H_{t-1} = H] \\
\mathbb{E} \Pr[\mu = \tilde{\mu}, H_t = H] &= \Pr[H_{t-1} = H'] \times \mathbb{P}_{H'}(\tilde{\mu}) \times \mathcal{D}_{\tilde{\mu}(a)}(r) \times \pi(a)\n\end{aligned}
$$

Rätt. 2 av 2 poäng.

9 Table 1: Number of samples $n_t(a)$ and total observed reward (return) $s_t(a)$ of each \boldsymbol{a} arm before round \boldsymbol{t} .

Consider a stochastic K -armed bandit problem with a set of arms ${\cal A}$, and $|{\cal A}|=K$. We define, at round t : is the arm played by the agent, $x_t(a)\in \{0,1\}$ is the reward received by an agent if it plays arm $a\in\mathcal{A}$, is the cumulative reward of arm \boldsymbol{a} before round \boldsymbol{t} , and is the number of rounds $\,$ that arm $\,a$ has been played before round t_{\cdot} Consider the scenario in Table 1, where an agent has played in a multi-armed bandit environment with $K\!=\!10$ arms up to round t . Note that the reward $x_t(a)$ is revealed to the agent *if and only if* arm $a\in\mathcal{A}$ is played in round t . With fixing the time horizon $T = 1000$, which arm will be chosen in rounds t and $t + 1$ by the UCB1 algorithm with confidence radius $r_t(a) = \sqrt{\frac{2 \log T}{n_t(a)}}$?

Rätt. 2 av 2 poäng.

10 Consider a stochastic bandit problem with $K = 2$ arms with Gaussian rewards with means μ_1 and μ_2 , respectively. Assume that the first arm is the optimal arm, i.e., $\mu^* = \mu_1$, and $\mu_1 = \mu_2 + \Delta$ with $\Delta > 0$. It can be shown that the regret of the Explore-First algorithm will be upper bounded by

$$
R(T) \le \Delta \left(N + T\Phi \left(-\Delta \sqrt{\frac{N}{2}} \right) \right)
$$
, where Φ denotes the cumulative distribution function (cdf) of the standard Gaussian distribution

standard Gaussian distribution.

Provide a value N^* of N that minimizes the above regret upper bound.

Hint 1: $\frac{\partial}{\partial N} \Phi(a(N)) = \phi(a(N)) \frac{\partial a(N)}{\partial N}$, where $\phi(x) = \frac{e^{-x/2}}{\partial N}$ denotes the probability density function (pdf) of the standard Gaussian distribution and $\pmb{a}(\pmb{N})$ is an arbitrary function of \pmb{N} . Hint 2: Use the Lambert function W , defined as for $y > 0$, $W(y) \exp(W(y)) = y$. Note: $\lceil x \rceil$ is the **ceiling function** which maps x to the least integer greater than or equal to x .

[Number of correct options: 1]

Fel. 0 av 3 poäng.

11 Consider the Bellman optimality equations that yield v_* 's or q_* 's (i.e., the optimal state values or the optimal action values).

Now, given v_* or q_* , choose the correct statements. [Number of correct options: 2]

- One-step search or greedy search based on optimal state values is sufficient for an optimal policy in \bullet ngterm.
- For an optimal policy in a state, one cannot rely only on the optimal state value at the respective state, and \Box should consider the optimal state values at other states as well.
- For each state s , there will be always only one action at which the maximum is obtained in the Bellman optimality equation.
- For each state s , there could be more than one action at which the maximum is obtained in the Bellon n optimality equation.

Rätt. 1 av 1 poäng.

12 Consider the definition of return in reinforcement learning as the following.
 $G_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k$

Note that T indicates the horizon or the total number of time steps. Choose the correct statements. [Number of correct options: 2]

- \Box We have $G_t = G_{t+1} + \gamma R_{t+1}$
- We have $G_t = R_{t+1} + G_{t+1}$

We have either $\boldsymbol{T} = \boldsymbol{\infty}$ or $\boldsymbol{\gamma} = \boldsymbol{1}$

- \Box For $T = \infty$ we have $\gamma = 1$.
- We have $G_t = R_{t+1} + \gamma G_{t+1}$

■ Optimal policies share the same state-value function. \Box Optimal policies do not necessarily share the same state-value function. \Box Policy π is better than or equal to policy π' if and only if $v_\pi(s)\geq v_{\pi'}(s)$ for all states $s\in\mathcal{S}$. \Box Optimal policies do not always share the same optimal action-value function. Policy π is better than or equal to policy π' if and only if $v_\pi(s)\geq v_{\pi'}(s)$ for at least one of the states . ■ Optimal policies share the same optimal action-value function. \checkmark

Rätt. 1 av 1 poäng.

 \mathbf{x}

14 What is the concept of "reward hypothesis" in reinforcement learning? [Number of correct options: 2]

 \Box It determines what should be achieved in a reinforcement learning task.

 $\mathbb Z$ It is equivalent to choosing actions with maximal expected/estimated reward at each time step.

- \Box It specifies how to reach the goals/purposes.
- It indicates the goals and purposes can be modeled by the maximization of the expected value of the cumulative sum of rewards.

Delvis rätt. 0 av 1 poäng.

15 Consider the policy evaluation (prediction) task in reinforcement learning to be performed under a MDP. The state values are shown by $v_{\pi}(s)$ under policy π for state s . Moreover, γ indicates the discount factor. Choose the correct statements about $v_{\pi}(s)$. [Number of correct options: 3]

 $v_\pi(s)=\mathrm{E}_\pi[R_{t+1}+\gamma v_\pi(S_{t+1})|S_t=s]$ $w_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$ where G_t is the return for time t. $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_t)|S_t = s]$ $w_{\pi}(s) = \mathbb{E}_{\pi}[\gamma G_{t+1}|S_t = s]$ where G_{t+1} is the return for time $t+1$. $w_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_t | S_t = s]$ where G_t is the return for time t . $w_{\pi}(s) = \mathop{\mathbf{E}}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$ where G_{t+1} is the return for time $t+1$. Rätt. 1 av 1 poäng. **16** Choose the correct statements about Dynamic Programming (DP) in reinforcement learning. [Number of correct options: 3] \blacksquare It may have great computation expense. \blacktriangledown \Box It is a model-free method. \blacksquare It is based on a perfect model of the environment as a Markov decision process (MDP).

 \Box It learns from real experiences (interactions between the agent and environment).

 \Box It always assumes the discount factor is 1.

 \vee It uses bootstrapping.

17 Choose the correct statements about Monte Carlo (MC) methods in reinforcement learning. [Number of correct options: 2]

MC methods work based on averaging sample returns.

- MC methods need some prior knowledge of the actual environment's dynamics.
- \Box MC methods perform the policy evaluation similar to Dynamic Programming methods.
- \heartsuit MC methods learn from experience.
- Unlike Dynamic Programming, MC methods need an MDP.

18 Consider the MC (Monte Carlo) methods in reinforcement learning. Which options propose a valid way to ensure all state-action pairs are visited? [Number of correct options: 2]

 \Box Using the discount factor of $\gamma < 1$

Using greedy policy only with function approximation

 \vee Using an ϵ -greedy policy

Exploring starts

Policy improvement by a greedy policy

19 Consider the backup diagram for n-step TD (n-step Temporal Difference) Sarsa when n=2. How many actions do appear in the backup diagram? [Number of correct options: 1]

Rätt. 1 av 1 poäng.

Rätt. 1 av 1 poäng.

- **20** Choose the correct statement(s) about Temporal-Difference (TD) learning in reinforcement learning. [Number of correct options: 3]
	- $\mathcal I$ It uses bootstrap, similar to Dynamic Programming.
	- \Box It uses bootstrap, similar to Mote Carlo methods.
	- \Box It assumes the state transition probabilities are given.
	- \Box It assumes a model of the environment.
	- \vee It is a model-free method.
	- \blacksquare It learns directly from raw experience (from interactions with the environment).

Rätt. 1 av 1 poäng.

- **21** Which item specifies the advantages of TD (Temporal Difference) over MC (Monte Carlo) in reinforcement learning? [Number of correct options: 1]
	- TD, unlike MC, does not require that the reward and next-state probability distributions are known.
	- TD, unlike MC, is naturally implemented in an online, fully incremental fashion.
	- □ TD, unlike MC, learns from return samples.
	- TD, unlike MC, does not require a model of the environment.

22 Consider the following reinforcement learning algorithm.

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize $Q(s, a)$, for all $s \in \mathcal{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize S Loop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A , observe R , S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Choose the correct statement(s) about this algorithm. [Number of correct options: 3]

- \vee This algorithm is a model-free method.
- This algorithm is a model-based method.
- \blacksquare This algorithm is for control (policy improvement).
- \vee This algorithm is an off-policy method.
- \Box This algorithm does not improve the policy.
- \Box This algorithm is an on-policy method.

Rätt. 1 av 1 poäng.

23 Consider n-step Expected Sarsa. Which option specifies its target update for state values? R_{t+1} corresponds to reward at time $t+1$, γ is the discount factor, π is the policy, S_t is the state at time t , Q is the action value function, and a is an action. [Number of correct options: 1]

$$
\begin{aligned}\n&\Box R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n-1} + \gamma^n \sum_a \pi(a|S_t) Q_t(S_t, a).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\Box R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n \sum_a \pi(a|S_{t+n}) Q_{t+n-1}(S_{t+n}, a).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\Box R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n \sum_a \pi(a|S_t) Q_{t+n-1}(S_t, a).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\Box R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n \sum_a \pi(a|S_t) Q_t(S_t, a).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n&\Box R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n \sum_a \pi(a|S_{t+n}) Q_t(S_{t+n}, a).\n\end{aligned}
$$

Fel. 0 av 1 poäng.

24 Consider function approximation for prediction in reinforcement learning, applied for state value estimation, i.e., $\hat{v}(S_t, \mathbf{w})$, where **w** corresponds to the parameters of the approximate function.

We use SGD (Stochastic Gradient Descent) to learn the parameters. We assume a linear function is used to approximate the state values, where $\mathbf{x}(S_t)$ specifies the features of state S_t . The update target is based on Monte Carlo (MC) shown by G_t .

Choose the correct statement about this problem. [Number of correct options: 1]

- \Box The SGD update is $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) \hat{v}(S_t, \mathbf{w}_t)] \mathbf{x}(S_t)$.
- The SGD update is $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t \hat{v}(S_t, \mathbf{w}_t)] \mathbf{w}_t^{\mathrm{T}} \mathbf{x}(S_t)$.
- The SGD update is $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t \hat{v}(S_t, \mathbf{w}_t)] \mathbf{x}(S_t)$.
- \blacksquare The SGD update is $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) \hat{v}(S_t, \mathbf{w}_t)] \mathbf{w}_t^{\mathrm{T}} \mathbf{x}(S_t)$.

Fel. 0 av 1 poäng.

25 Consider function approximation for prediction in reinforcement learning, applied for state value estimation, i.e., $\hat{v}(S_t, \mathbf{w})$, where w corresponds to the parameters of the approximate function. We use the "state aggregation" method for $\hat{v}(S_t, \mathbf{w})$ along with SGD (Stochastic Gradient Descent) to learn the parameters.

We apply this method to a task with 1000 states (e.g., the 1000-state Random Walk problem). We obtain the following results about the estimated (approximate) and true state values.

Choose the correct statements about this problem. [Number of correct options: 2]

- The update target used here is based on Monte Carlo (MC).
- The update target used here is based on Temporal-Difference (TD).
- \Box The update target used here is unbiased.
- \vee The update target used here is biased.

26 Choose the correct statement(s) about function approximation in reinforcement learning. [Number of correct options: 2]

 \blacksquare It is useful for huge state spaces including visual images.

- \Box The approximate function must always be implemented using a deep neural network.
- Compared to tabular reinforcement learning, it supports better the transfer of state values between silar states.
- \Box It is only applicable when the model of the environment is known.

27 Which of the ideas is difficult to transfer easily from tabular reinforcement learning to deep reinforcement learning? [Number of correct options: 1] **Temporal Difference (TD)** Double learning Experience replay □ Monte Carlo (MC) UCB / Thompson sampling

 \Box It uses two completely independent neural networks instead of one.

Delvis rätt. 0 av 1 poäng.

Rätt. 1 av 1 poäng.

29 Consider the episodic semi-gradient sarsa algorithm in reinforcement learning described as following.

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

Input: a differentiable action-value function parameterization $\hat{q}: \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}$ Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$ Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$) Loop for each episode: $S, A \leftarrow$ initial state and action of episode (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S' If S' is terminal: $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$ Go to next episode Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε -greedy) $\mathbf{w} \leftarrow \mathbf{w} + \alpha \big[R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w}) \big] \nabla \hat{q}(S, A, \mathbf{w})$ $S \leftarrow S'$

How can the algorithm be converted to semi-gradient n-step sarsa? [Number of correct options: 1]

- By replacing $R + \gamma \hat{q}(S', A', \mathbf{w})$ (if S' is not terminal state) by 0.
- \Box By replacing R (if S' is not terminal state) by 0

 $A \leftarrow A'$

- \boxtimes By replacing R (if S' is not terminal state) by $G_{t:t+n}$, i.e., by n-step TD target.
- By replacing $R + \gamma \hat{q}(S', A', \mathbf{w})$ (if S' is not terminal state) by $G_{t:t+n}$, i.e., by n-step TD target.
- \Box By replacing $\hat{q}(S', A', \mathbf{w})$ (if S' is not terminal state) by $G_{t:t+n}$, i.e., by n-step TD target.

Fel. 0 av 1 poäng.

- **30** Consider the one-step actor–critic method in reinforcement learning. Choose the correct statements about that. [Number of correct options: 2]
	- \heartsuit The actor is responsible for learning the policy.
	- \Box It uses the same update target as the REINFORCE algorithm.
	- \Box The critic is based on action value function.
	- \Box The policy improvement is based on ϵ -greedy.
	- \vee The critic is based on state value function.

31 Consider the REINFORCE method with baseline, described below.

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to 0) Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot | \cdot, \boldsymbol{\theta})$ Loop for each step of the episode $t = 0, 1, ..., T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ (G_t) $\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$ Update w Update θ

Choose the correct statement about this algorithm. [Number of correct options: 1]

 \Box The policy is based on a greedy or ϵ -greedy policy.

 \Box The baseline must be constant and fixed for all episodes.

- \Box The baseline term is δ .
- The baseline term is $\hat{v}(S_t, \mathbf{w})$.

Rätt. 1 av 1 poäng.

- **32** Choose the correct statements about value-based and policy-based methods in reinforcement learning. [Number of correct options: 2]
	- \Box ϵ -greedy is usually related to policy-based methods.
	- $\sqrt{ }$ Actor-Critic methods learn both policy and value functions.
	- \triangle ϵ -greedy is usually related to value-based methods.
	- \Box ϵ -greedy is commonly used in both policy-based and value-based methods.
	- \Box ϵ -greedy is commonly used in Actor-Critic methods.

33 Consider an episodic reinforcement learning problem where we apply Temporal Difference (TD). As you know, the TD error is defined as: $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ where R_{t+1} is the reward at time $t+1$, γ is the discount factor, and $V(S_t)$ is the state value function for state S_t . Assume that $V(.)$ does not change during the episode. Then, fill in the missing parts X and Y in the following expression (note that G_t is the return at time t). $G_t = V(S_t) + \delta_t + \gamma X + \gamma^2 (Y - V(S_{t+2})).$ [Number correct options: 1] $X = G_{t+1}, Y = V(S_{t+1})$ $X = G_{t+1}, Y = \delta_{t+1}$ $\Box X = \delta_t, Y = G_t$

$$
\Box\; X=V(S_{t+1}), Y=G_{t+2}
$$

$$
\mathscr{D}\text{ } X=\delta_{t+1}, Y=G_{t+2}
$$

Rätt. 2 av 2 poäng.

34 Assume a model-free reinforcement learning problem based on Monte Carlo (MC) control wherein **a** refer to an action, g refers to a state, $A(s)$ refers to the set of possible actions in state s, v is the state value function, and q is the action value function.

As you know, ϵ -greedy is used in Monte Carlo (MC) control. In particular, the ϵ -greedy policy π' is performed with respect to the actions values computed according to the old policy π (note that π is an ϵ -soft policy as well, i.e., with π , every action is selected with probability at least $\frac{\epsilon}{|A|}$).

Choose the correct statements. Note

[Number of correct options: 3]

If
$$
q_{\pi}(s, \pi'(s)) \ge \sum_a \frac{\pi(a|s) - \frac{\epsilon}{|A(s)|}}{1 - \epsilon} q_{\pi}(s, a)
$$
 then we have $q_{\pi}(s, \pi'(s)) \ge v_{\pi'}(s)$
\n
$$
q_{\pi}(s, \pi'(s)) = \frac{\epsilon}{|A(s)|} \sum_a q_{\pi}(s, a) + (1 - \epsilon) \max_a q_{\pi}(s, a)
$$
\nIf $q_{\pi}(s, \pi'(s)) \ge \frac{\epsilon}{|A(s)|} \sum_a q_{\pi}(s, a) + (1 - \epsilon) \sum_a \frac{\pi(a|s) - \frac{\epsilon}{|A(s)|}}{1 - \epsilon} q_{\pi}(s, a)$ then we have
\n
$$
q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)
$$
\nIf $q_{\pi}(s, \pi'(s)) \ge \frac{\epsilon}{|A(s)|} \sum_a q_{\pi}(s, a) + (1 - \epsilon) \sum_a \frac{\pi(a|s) - \frac{\epsilon}{|A(s)|}}{1 - \epsilon} q_{\pi}(s, a)$ then we have
\n
$$
q_{\pi}(s, \pi'(s)) \ge v_{\pi'}(s)
$$
\nAccording to the policy improvement theorem, π' is an improvement over π or π' is as good as π .

$$
\textstyle \quad \mathop{}\!\Box q_\pi(s, \pi'(s)) = \frac{\epsilon}{|\mathcal{A}(s)|} \sum_a q_{\pi'}(s, a) + (1 - \epsilon) \max_a q_{\pi'}(s, a)
$$

Rätt. 2 av 2 poäng.