Sample solutions for the examination of
Computability
(DAT415/DIT311/DIT312/TDA184)
from 2021-01-13

Nils Anders Danielsson

1. (a) A=N—>N,B={0}.
(b) First consider the following lemma:

Lemma. If there is a surjection from B to A, then there is an
injection from A — C to B — C.

Proof. Take a surjection f € B — A. Define the function g €
(A—-C) — (B — C)by ghe=h(fz). This function is injec-
tive: Take hy, hy € A — C. If g hy = g hy, then, for every = € B, we
have hy (fz) = ghy = g hy x = hy (fz). Because f is surjective this
means that we have hy y = hy y for every y € A, i.e. hy = h,. O

Note that there is a surjection from N — N to N (map f to f0),
so by the lemma above there is an injection from N — {0,1} to
(N—=N)—{0,1}.

Let us now prove that (N — N) — {0,1} is not countable. For
this purpose, let us assume that the set is countable, i.e. that there
is an injection from (N — N) — {0,1} to N. The composition of
two injections is injective, so this implies that there is an injection
from N — {0,1} to N, i.e. that N — { 0,1} is countable. However,
a minor variant of the diagonalisation argument that was used in a
lecture to show that N — N is uncountable can be used to show that
N — { 0,1} is uncountable. Thus we have arrived at a contradiction,
so (N—= N) — {0,1} is not countable.

2. case True() of {True(z) — z}.

3. No. We can prove this by reducing the halting problem (which is not
x-decidable) to f.

If fis x-decidable, then there is a closed x expression f witnessing the
computability of £ We can use this expression to construct a closed x

expression halts (written using a mixture of concrete syntax and meta-
level notation):!

halts = Xe. fPair(" A_. False() ", e).
For any e € CEzp we have

[halts " e™] —
[f Pair(" A_.False() ," e ")]
[/ ((A—False()), e) ']

“F (A False()),)

" if [(A_. False()) e] = "false " then true else false ' =
" if [e] is defined then true else false ,

i.e. halts witnesses the decidability of the halting problem.

4. Yes. The closed expression

f= Ap.case pof
{Pair(ey, e5) —
case equal Pair(eval Apply(e, e,)," "false ' ') of
{True() = True() }

(written using a mixture of concrete syntax and meta-level notation) wit-
nesses the computability of f. Here eval is a self-interpreter and equal an
equality test that satisfy the following properties:

Vee CErp. Jeval" e’ ="[e]"
Ve, e, € CExp.
[equal Pair("e; ", e,)] =" if e, = e, then true else false "

Let us prove that fis an implementation of f. Take two closed expressions
e, 6o € CExp. We get that

[[fr (1, €) 1]]
[[fPair(r ep s e)]
[case equal Pair(eval Apply(" e, ', ey ')," "false ') of
{True() = True() }] =
[case equal Pair([eval " apply e; e; ']," "false ") of
{True() = True() }] =
[case equal Pair(" [apply e, e5] ," "false ') of
{True() = True() }] .

We can conclude the proof by considering the following three, exhaustive
cases:

n the first version of these sample solutions I had written Apply instead of Pair. When I
corrected the exams I encountered a solution that used Pair, and realised my mistake. Thanks!

If [apply €; e,] is equal to " false’, then we have

[/ (e e0) 7] =
[case equal Pair(" " false ' '," "false ') of
{True() = True() }] =
[case True() of { True() — True()}] =
true’ =

"flee)”
If [apply e, e,] is defined, but not equal to "false ', then

[[fr(ela%)jﬂ =
[case equal Pair(" [apply e; e] ," "false ") of

{True() = True() }] =
[case False() of { True() = True()}],

which is undefined, and thus equal to " f (e, ;) .

If [apply e; e,] is undefined, then [f" (e;, e;) '] is also undefined,
and thus equal to " f (e, e5) .

If the machine is run with 111 as the input string, then the following
configurations are encountered:

* (50, [}, [1, 1,1]).

* (50, [1],[1,1]).
(30’[’] [D

* (50, [L 1,1 [0])-
(50, [0
(50, [

S0y [17131] [])
S50y \\7\\71 1 1} [])

The machine stays in state s, forever: after the first couple of steps
it will always read a blank. It does not halt.

No. If the machine is run with 0 = "0 " as the input string, then the
following configurations are encountered:

* (50, (1, [0])-
N CHIAmE
o (s [[0D)

The same configuration is encountered twice, so the machine is stuck
in a loop and does not halt.

6. No. If we remove suc, proj or rec, then we can still construct the term
comp zero nil € PRF;, and the unary function represented by this term is
not increasing:

[comp zero nil] (nil, 1)
[zero] nil =
0 z
1

If we instead remove comp, then we can construct rec zero (proj 1) € PRF,
and

[rec zero (proj 1)] (nil, 1) =
[proj 1] (nil, 0, [rec zero (proj 1)] (nil, 0))
0
1.

|

Finally, if we remove zero, then we can construct the term
comp (rec (proj 0) (proj 1)) (nil, proj 0, proj 0) € PRF},
and

[comp (rec (proj 0) (proj 1)) (nil, proj 0, proj 0)] (nil, 1) =
[rec (proj 0) (proj 1)] (nil,1,1) =
[proj 1] (nil, 1,0, [rec (proj 0) (proj 1)] (nil, 1,0)) =
0 z
1.

