
Sample solutions for the examination of
Computability

(DAT415/DIT311/DIT312/TDA184)
from 2021-01-13

Nils Anders Danielsson

1. (a) A = ℕ → ℕ, B = { 0 }.
(b) First consider the following lemma:

Lemma. If there is a surjection from 𝐵 to 𝐴, then there is an
injection from 𝐴 → 𝐶 to 𝐵 → 𝐶.

Proof. Take a surjection 𝑓 ∈ 𝐵 → 𝐴. Define the function 𝑔 ∈
(𝐴 → 𝐶) → (𝐵 → 𝐶) by g h x = h (f x). This function is injec-
tive: Take h1, h2 ∈ 𝐴 → 𝐶. If g h1 = g h2, then, for every 𝑥 ∈ 𝐵, we
have h1 (f x) = g h1 x = g h2 x = h2 (f x). Because 𝑓 is surjective this
means that we have h1 y = h2 y for every 𝑦 ∈ 𝐴, i.e. h1 = h2.

Note that there is a surjection from ℕ → ℕ to ℕ (map 𝑓 to f 0),
so by the lemma above there is an injection from ℕ → { 0, 1 } to
(ℕ → ℕ) → { 0, 1 }.
Let us now prove that (ℕ → ℕ) → { 0, 1 } is not countable. For
this purpose, let us assume that the set is countable, i.e. that there
is an injection from (ℕ → ℕ) → { 0, 1 } to ℕ. The composition of
two injections is injective, so this implies that there is an injection
from ℕ → { 0, 1 } to ℕ, i.e. that ℕ → { 0, 1 } is countable. However,
a minor variant of the diagonalisation argument that was used in a
lecture to show that ℕ → ℕ is uncountable can be used to show that
ℕ → { 0, 1 } is uncountable. Thus we have arrived at a contradiction,
so (ℕ → ℕ) → { 0, 1 } is not countable.

2. case True() of {True(x) → x}.

3. No. We can prove this by reducing the halting problem (which is not
𝜒-decidable) to f.
If f is 𝜒-decidable, then there is a closed 𝜒 expression f witnessing the
computability of f. We can use this expression to construct a closed 𝜒

1

expression halts (written using a mixture of concrete syntax and meta-
level notation):1

halts = 𝜆e. f Pair(⌜ 𝜆 . False() ⌝, e).

For any e ∈ CExp we have

⟦halts ⌜ e ⌝ ⟧ =
⟦f Pair(⌜ 𝜆 . False() ⌝, ⌜ e ⌝) ⟧ =
⟦f ⌜ ((𝜆 . False()), e) ⌝ ⟧ =
⌜ f ((𝜆 . False()), e) ⌝ =
⌜ if ⟦(𝜆 . False()) e ⟧ = ⌜ false ⌝ then true else false ⌝ =
⌜ if ⟦e ⟧ is defined then true else false ⌝,

i.e. halts witnesses the decidability of the halting problem.

4. Yes. The closed expression

f = 𝜆p. case p of
{Pair(e1, e2) →

case equal Pair(eval Apply(e1, e2), ⌜ ⌜ false ⌝ ⌝) of
{True() → True()}

}

(written using a mixture of concrete syntax and meta-level notation) wit-
nesses the computability of 𝑓 . Here eval is a self-interpreter and equal an
equality test that satisfy the following properties:

∀ e ∈ CExp. ⟦eval ⌜ e ⌝ ⟧ = ⌜ ⟦e ⟧ ⌝
∀ e1, e2 ∈ CExp.

⟦equal Pair(⌜ e1 ⌝, ⌜ e2 ⌝) ⟧ = ⌜ if e1 = e2 then true else false ⌝

Let us prove that f is an implementation of f. Take two closed expressions
e1, e2 ∈ CExp. We get that

⟦ f ⌜ (e1, e2) ⌝ ⟧ =
⟦ f Pair(⌜ e1 ⌝, ⌜ e2 ⌝) ⟧ =
⟦ case equal Pair(eval Apply(⌜ e1 ⌝, ⌜ e2 ⌝), ⌜ ⌜ false ⌝ ⌝) of

{True() → True()} ⟧ =
⟦ case equal Pair(⟦eval ⌜ apply e1 e2 ⌝ ⟧, ⌜ ⌜ false ⌝ ⌝) of

{True() → True()} ⟧ =
⟦ case equal Pair(⌜ ⟦apply e1 e2 ⟧ ⌝, ⌜ ⌜ false ⌝ ⌝) of

{True() → True()} ⟧ .

We can conclude the proof by considering the following three, exhaustive
cases:

1In the first version of these sample solutions I had written Apply instead of Pair. When I
corrected the exams I encountered a solution that used Pair, and realised my mistake. Thanks!

2

• If ⟦apply e1 e2 ⟧ is equal to ⌜ false ⌝, then we have

⟦ f ⌜ (e1, e2) ⌝ ⟧ =
⟦ case equal Pair(⌜ ⌜ false ⌝ ⌝, ⌜ ⌜ false ⌝ ⌝) of

{True() → True()} ⟧ =
⟦ case True() of {True() → True()} ⟧ =
⌜ true ⌝ =
⌜ f (e1, e2) ⌝ .

• If ⟦apply e1 e2 ⟧ is defined, but not equal to ⌜ false ⌝, then

⟦ f ⌜ (e1, e2) ⌝ ⟧ =
⟦ case equal Pair(⌜ ⟦apply e1 e2 ⟧ ⌝, ⌜ ⌜ false ⌝ ⌝) of

{True() → True()} ⟧ =
⟦ case False() of {True() → True()} ⟧ ,

which is undefined, and thus equal to ⌜ f (e1, e2) ⌝.
• If ⟦apply e1 e2 ⟧ is undefined, then ⟦f ⌜ (e1, e2) ⌝ ⟧ is also undefined,

and thus equal to ⌜ f (e1, e2) ⌝.
5. (a) If the machine is run with 111 as the input string, then the following

configurations are encountered:
• (s0, [], [1, 1, 1]).
• (s0, [1], [1, 1]).
• (s0, [1, 1], [1]).
• (s0, [1, 1, 1], [␣]).
• (s0, [␣, 1, 1, 1], [␣]).
• (s0, [␣, ␣, 1, 1, 1], [␣]).
• …

The machine stays in state s0 forever: after the first couple of steps
it will always read a blank. It does not halt.

(b) No. If the machine is run with 0 = ⌜ 0 ⌝ as the input string, then the
following configurations are encountered:

• (s0, [], [0]).
• (s1, [], [␣]).
• (s1, [], [␣]).
• …

The same configuration is encountered twice, so the machine is stuck
in a loop and does not halt.

3

6. No. If we remove suc, proj or rec, then we can still construct the term
comp zero nil ∈ PRF1, and the unary function represented by this term is
not increasing:

⟦comp zero nil ⟧ (nil, 1) =
⟦zero ⟧ nil =
0 ≱
1

If we instead remove comp, then we can construct rec zero (proj 1) ∈ PRF1,
and

⟦rec zero (proj 1) ⟧ (nil, 1) =
⟦proj 1 ⟧ (nil, 0, ⟦rec zero (proj 1) ⟧ (nil, 0)) =
0 ≱
1.

Finally, if we remove zero, then we can construct the term

comp (rec (proj 0) (proj 1)) (nil, proj 0, proj 0) ∈ PRF1,

and

⟦comp (rec (proj 0) (proj 1)) (nil, proj 0, proj 0) ⟧ (nil, 1) =
⟦rec (proj 0) (proj 1) ⟧ (nil, 1, 1) =
⟦proj 1 ⟧ (nil, 1, 0, ⟦rec (proj 0) (proj 1) ⟧ (nil, 1, 0)) =
0 ≱
1.

4

