Examination, Computability
(DAT415/DIT310/DIT311/DIT312/TDA184)

Date and time: 2020-01-15, 8:30-12:30.

Author/examiner: Nils Anders Danielsson. Telephone number: 1680. Vis-
its to the examination rooms: ~9:30 and ~11:30.

Authorised aids (except for aids that are always permitted): None.

The GU grades Pass (G) and Pass with Distinction (VG) correspond to
the Chalmers grades 3 and 5, respectively.

To get grade n on the exam you have to be awarded grade n or higher on
at least n exercises.

A completely correct solution of one exercise is awarded the grade 5. Solu-
tions with minor mistakes might get the grade 5, and solutions with larger
mistakes might get lower grades.

Exercises can contain parts and/or requirements that are only required
for a certain grade. To get grade n on such an exercise you have to get
grade n or higher on every part marked with grade n or lower (and every
unmarked part), and you have to fulfil every requirement marked with
grade n or lower (as well as every unmarked requirement).

Do not hand in solutions for several exercises on the same sheet.
Write your examination code on each sheet.

Solutions can be rejected if they are hard to read, unstructured, or poorly
motivated.

After correction the graded exams are available in the student office in
room 4482 of the EDIT building. If you want to discuss the grading,
contact the examiner no later than three weeks after the result has been
reported. In this case you should not remove the exam from the student
office.

1. (a) For grade 3: Give examples of sets A and B for which A x B is
countable, whereas A — B is not. You do not need to provide proofs.

(b) For grade 4: Either prove that the set
List (N = N)

is countable, or that it is not countable. Here List A is the set con-
taining finite lists of elements from the set A, as defined in the lec-
tures. You can use theorems from the lecture slides without providing
proofs for them.

2. Give concrete syntax for the x expression e for which the standard x
encoding (as presented in the lectures), given using concrete syntax, is

" e = Const(Zero(),
Cons(Lambda(Suc(Zero()),
Const(Zero(),
Cons(Var(Suc(Zero())), Nil()))),

Nil())).

Assume that the number 0 corresponds to the constructor True, and that
the number 1 corresponds to the variable z.

3.If fe N—=Nand g € N — N are both y-computable, is the partial
function h € N — N defined by h n = fn+ g n always x-computable?

For grade 3: Motivate your answer.

For grade 4: Provide a proof. You are allowed to make use of Rice’s
theorem, the fact that the halting problem is undecidable, the fact that
the terminates-in function from the lectures (which decides whether an
expression terminates in at most a certain number of steps) is decidable,
and the fact that addition of natural numbers is computable, but not
other results stating that some function is or is not computable (unless
you provide proofs).

For grade 5: You may not use Rice’s theorem (unless you provide a proof).

4. Is the following function x-decidable?
f € CEzp x CEzp — Bool

f (e, ep) =if 3b€ Bool [apply e, " b '] = [apply e5 " b]
then true else false

The grade criteria of the previous exercise apply to this one as well.

5. Consider the following Turing machine:

()

(b)

Input alphabet: { 0,1 }.
Tape alphabet: { 0,1, }.
States: { sg, $1, Sq, S5 }-
Initial state: sg.

Transition function:

For grade 3: What is the result of running this Turing machine with
1110 as the input string? Does it halt? In that case, what is the
resulting string?

For grade 4: Let us represent natural numbers (0, 1, 2..) in the
following way: the number n € N is represented by a string with n
ones followed by one zero (1"0). Does this Turing machine witness
the Turing-computability of some total function from N to N? In
either case you should provide a proof. If the answer is yes, then
you should additionally give a simple description of the function that
is witnessed, without any reference to Turing machines (no proof is
needed for this part).

6. Consider the language RF™ that we get if we remove suc from the abstract
syntax of RF, as well as the rule of the semantics that refers to suc. Either
prove that the semantics of RF ™ is total (what this means is defined more
precisely below), or that it is not total.

Here is the abstract syntax of RF :

i€ N 0<i<n f€RF,, gs€ (RF,)™
zero € RFy proj i€ RF,, comp fgs€ RF,,
fERF; geRF2_+n fGRFl_+n
recfge RF, ., min fe RF,,

The operational semantics of RF™, f[p] || m, is, for every n€N, a re-
lation between programs f& RF, , vectors p € N”, and natural numbers
meN, and fs[p] |* ms is, for all m, n€ N, a relation between vectors
fse (RF,,)", vectors p € N™, and vectors ms € N". These two relations
are defined inductively in the following way:

gslpl ¥ p* flp'l U n

zero[nil] J 0 proj i[p] U index p i comp fgs[p] 4 n
fle] ¥ n rec fglo,m] 4 n glp,n,m | o
rec fg[p,zero] | n rec fg[p,sucm] | o

flp,n] 4 0 Ym<n IkeN.fl[p,m | 1+k
min f17] & n

fslp] 4 ns flpl U n
nil [p] 4* nil fs, flp] ¥ ns,n

The index function is defined in the following way (for any set A and
natural number n):

indexe A" - {ieN|0<i<n}— A
index (xs,z) zero =z
index (xs,) (suc i) = index xs i

The semantics is total if, for every n€N, fe RF, and p € N, there is
some m € N such that f[p] { m.

