Sample solutions for the examination of
Computability
(DAT415/DIT310/DIT311/DIT312/TDA184)
from 2020-01-15

Nils Anders Danielsson

1. (a) A=N, B=N.

(b) The set is not countable: Let us assume that the set is countable.
This means that there is an injection from List (N — N) to N. There is
also an injection from N — N to List (N — N): the function mapping f
to [f] (this function is injective because if [f] = [g], then f= g). Thus,
because compositions of injections are injective, we get that there is
an injection from N — N to N. However, this is impossible, because
N — N is not countable. Thus we have arrived at a contradiction.

2. True(Az.True(z)).

3. Yes. If f and g are both y-computable, then there are closed x expressions
fand g witnessing the computability of f and g, respectively. There is also
a witness add of the computability of the function add € NxN — N defined
by add (z,y) = x + y. For any variable = the closed expression

Az. add Pair(f 7, g 7)

(written using a mixture of concrete syntax and meta-level notation) wit-
nesses the computability of h, because for any n € N we have

[(Az. add Pair(fz,gz)) "n"]
ladd Pair(f"n",g"n")] =
[add Pair(" fn","gn") =
[add " (fn, g n) "] =
“fntgn’ =
"hn'.

4. No. We can prove this by reducing the halting problem (which is not
x-decidable) to f.

If fis x-decidable, then there is a closed x expression f witnessing the
computability of £ We can use this expression to construct a closed x

5.

expression halts (written using a mixture of concrete syntax and meta-
level notation):

halts = Xe. fPair(" _. (A_. True()) _ e, "," A_. True()).

Let us now verify that halts witnesses the decidability of the halting prob-
lem. For any e € CExp we have

[halts " "] =

[f Pair(" A_. (A_. True()) e"," A_. True())]

[/7 (A~ (A= True()) €), (A—. True())) ']

f((A- (/\ -True())), (A—. True())) ’

if 3b € Bool. [(A_.(A_.True()) e) "o] =[(A_True()) "b"]
then "true " else " false =

if 3b € Bool. [(A—.True()) e] = True() then "true " else "false ' =

if [(A_.True()) e] = True() then "true " else " false "

If [e] is defined, then

if [(A_.True()) e] = True() then "true " else " false " =
if True() = True() then "true " else " false " =
“true |

and if [e] is undefined, then

if [(A_.True()) e] = True() then "true " else " false " =
if True() is undefined then " true " else " false " =
"false .

Thus we get
[halts" e '] =" if [e] is defined then true else false ",

i.e. halts witnesses the decidability of the halting problem.

(a) If the machine is run with 1110 as the input string, then the following
configurations are encountered:

® (30’ H [15 1, 170])

° ([] [1’150])'
d (317[)][])
* (s1,[1,1,1],[0]).
o (s, [1,1][1,0]).
o (s4,[1],[1,0,.]).
The last configuration above is a halting one, so the resulting string

is 110.

(b) Yes, the machine implements a function that subtracts one from the
input if the input is positive, and leaves the input unchanged if it is
zero:

o If the input is " 0 ' = 0, then the machine halts right away.

o Iftheinputis 14 n" = 11770 for some n € N, then the machine
will move to the right past all the ones, replace the zero with a
blank, move left, replace the last one (there has to be at least
one) with a zero, and halt (after potentially moving left). Thus
the result is 1"0 ="n".

6. No, the semantics is not total. Take the program min (proj 1) € RF; and
the vector nil,1 € N'. There is no m € N such that

min (proj 1) [nil, 1] § m,

because if there were, then proj 1[nil, 1, n] | 0 would hold for some n € N,
and it does not (because indez (nil,1,n) 1 =1 #0).

