
Sample solutions for the examination of
Computability

(DAT415/DIT310/DIT311/DIT312/TDA184)
from 2020-01-15

Nils Anders Danielsson

1. (a) A = ℕ, B = ℕ.
(b) The set is not countable: Let us assume that the set is countable.

This means that there is an injection from List (ℕ → ℕ) to ℕ. There is
also an injection from ℕ → ℕ to List (ℕ → ℕ): the function mapping f
to [f] (this function is injective because if [f] = [g], then f = g). Thus,
because compositions of injections are injective, we get that there is
an injection from ℕ → ℕ to ℕ. However, this is impossible, because
ℕ → ℕ is not countable. Thus we have arrived at a contradiction.

2. True(𝜆𝑥.True(𝑥)).
3. Yes. If 𝑓 and 𝑔 are both 𝜒-computable, then there are closed 𝜒 expressions

f and g witnessing the computability of 𝑓 and 𝑔, respectively. There is also
a witness add of the computability of the function add ∈ ℕ×ℕ → ℕ defined
by add (x, y) = 𝑥 + 𝑦. For any variable 𝑥 the closed expression

𝜆x. add Pair(f x, g x)

(written using a mixture of concrete syntax and meta-level notation) wit-
nesses the computability of ℎ, because for any 𝑛 ∈ ℕ we have

⟦(𝜆x. add Pair(f x, g x)) ⌜ n ⌝ ⟧ =
⟦add Pair(f ⌜ n ⌝, g ⌜ n ⌝) ⟧ =
⟦add Pair(⌜ f n ⌝, ⌜ g n ⌝) ⟧ =
⟦add ⌜ (f n, g n) ⌝ ⟧ =
⌜ f n + g n ⌝ =
⌜ h n ⌝.

4. No. We can prove this by reducing the halting problem (which is not
𝜒-decidable) to f.
If f is 𝜒-decidable, then there is a closed 𝜒 expression f witnessing the
computability of f. We can use this expression to construct a closed 𝜒

1

expression halts (written using a mixture of concrete syntax and meta-
level notation):

halts = 𝜆e. f Pair(⌜ 𝜆 . (𝜆 . True()) ⌞ e ⌟ ⌝, ⌜ 𝜆 . True() ⌝).

Let us now verify that halts witnesses the decidability of the halting prob-
lem. For any e ∈ CExp we have

⟦halts ⌜ e ⌝ ⟧ =
⟦f Pair(⌜ 𝜆 . (𝜆 . True()) e ⌝, ⌜ 𝜆 . True() ⌝) ⟧ =
⟦f ⌜ ((𝜆 . (𝜆 . True()) e), (𝜆 . True())) ⌝ ⟧ =
⌜ f ((𝜆 . (𝜆 . True()) e), (𝜆 . True())) ⌝ =
if ∃ b ∈ Bool. ⟦(𝜆 . (𝜆 . True()) e) ⌜ b ⌝ ⟧ = ⟦(𝜆 . True()) ⌜ b ⌝ ⟧

then ⌜ true ⌝ else ⌜ false ⌝ =
if ∃ b ∈ Bool. ⟦(𝜆 . True()) e ⟧ = True() then ⌜ true ⌝ else ⌜ false ⌝ =
if ⟦(𝜆 . True()) e ⟧ = True() then ⌜ true ⌝ else ⌜ false ⌝ .

If ⟦e ⟧ is defined, then

if ⟦(𝜆 . True()) e ⟧ = True() then ⌜ true ⌝ else ⌜ false ⌝ =
if True() = True() then ⌜ true ⌝ else ⌜ false ⌝ =
⌜ true ⌝,

and if ⟦e ⟧ is undefined, then

if ⟦(𝜆 . True()) e ⟧ = True() then ⌜ true ⌝ else ⌜ false ⌝ =
if True() is undefined then ⌜ true ⌝ else ⌜ false ⌝ =
⌜ false ⌝.

Thus we get

⟦halts ⌜ e ⌝ ⟧ = ⌜ if ⟦e ⟧ is defined then true else false ⌝,

i.e. halts witnesses the decidability of the halting problem.

5. (a) If the machine is run with 1110 as the input string, then the following
configurations are encountered:

• (s0, [], [1, 1, 1, 0]).
• (s1, [1], [1, 1, 0]).
• (s1, [1, 1], [1, 0]).
• (s1, [1, 1, 1], [0]).
• (s2, [1, 1], [1, ␣]).
• (s3, [1], [1, 0, ␣]).

The last configuration above is a halting one, so the resulting string
is 110.

2

(b) Yes, the machine implements a function that subtracts one from the
input if the input is positive, and leaves the input unchanged if it is
zero:

• If the input is ⌜ 0 ⌝ = 0, then the machine halts right away.
• If the input is ⌜ 1 + n ⌝ = 11+𝑛0 for some n ∈ ℕ, then the machine

will move to the right past all the ones, replace the zero with a
blank, move left, replace the last one (there has to be at least
one) with a zero, and halt (after potentially moving left). Thus
the result is 1𝑛0 = ⌜ n ⌝.

6. No, the semantics is not total. Take the program min (proj 1) ∈ RF−
1 and

the vector nil, 1 ∈ ℕ1. There is no m ∈ ℕ such that

min (proj 1) [nil, 1] ⇓ m,

because if there were, then proj 1 [nil, 1, n] ⇓ 0 would hold for some n ∈ ℕ,
and it does not (because index (nil, 1, n) 1 = 1 ≠ 0).

3

