
DAT400/DIT431 High Performance Parallel Programming Page 1 (15)

Solutions for the Exam in DAT400 (Chalmers) and DIT431 (GU) High Performance Parallel
Programming, Friday, October 28th, 2022, 14:00h - 18:00h

DAT400/DIT431 High Performance Parallel Programming Page 2 (15)

Problem 1 (10 points)

Consider a program that consists of the following main loop:

float sum = 0.0;
float a[N], b[N], c[N], d[N+1];

// main loop:
for (auto i = 0; i < N; i++){

c[i] = a[i] + b[i];
sum += a[i] * b[i];
d[i+1]=d[i];
}

Tasks:

(a) Discuss whether this code can be parallelized and/or vectorized. If not, list the code
transformations required to enable its parallelization and/or vectorization.

(b) The programmer is now tasked with parallelizing the code over a multicore processor.
To select the unit of scheduling, they have been given three options: processes, kernel-
level threads or user-level threads. Describe each option (2-3 lines) and list (at least)
one advantage and one disadvantage of each approach.

(c) In the previous code, if each iteration is to become an independent scheduling unit,
should the iteration be mapped to a distinct process, a distinct kernel-level thread, or a
distinct user-level thread? Discuss each option separately from a scheduling perspective.

(d) Finally, from a data perspective, list two downsides of creating a new scheduling unit
for each iteration. Given the discussion, suggest a new chunk size that will lead to high
performance for a system with P processors and cache line size of 64 bytes.

Answers

Part (a) The first statement can be parallelized and vectorized. The second statement can
be parallelized and vectorized, but to deal with the reduction, privatization, and an outer
reduction loop are required. The third statement cannot be parallelized or vectorized due to
the loop carried dependency. One option is to move it out of the loop and execute it in its
own loop. But note that what this loop does is copy d[0] to all other positions. hence the
statement is equivalent to d[i+1] = d[0] which can both be parallelized and vectorized.

Part (b) Processes: own address space. Strong progress guarantees. Large creation and
context switch overhead.
KLT: shared address space with kernel scheduling. Creation and context switch overheads
are reduced. Strong progress guarantees.
ULT: shared address space with library scheduling. Very low creation and context switch
overheads. Weak progress guarantees (a blocked thread blocks all other threads, and no
guarantee that the library will ever schedule the ULT for execution)

Part (c) Because a single iteration is extremely fine grained, the only reasonable option
would be to use user level threads.

DAT400/DIT431 High Performance Parallel Programming Page 3 (15)

Part (d) Two downsides are that (a) it will lead to false sharing, and (b) it will increase the
amount of synchronization to deal with the reduction
The best possible chunk size would be max(N/P, 64/4). N/P because we want large chunks
that do not limit parallelism, and 64/4 because with want to avoid false sharing across
chunks.

DAT400/DIT431 High Performance Parallel Programming Page 4 (15)

Problem 2 (10p)

STREAM is a widely used benchmark to measure the memory bandwidth of a system. In
this problem you will use it to study the effect of different kinds of OpenMP schedulers on
performance. Consider the following code:

#pragma omp parallel for
for (int i=0; i<STREAM_ARRAY_SIZE; i++) {

c[i] = a[i];
}

Assume a programmer wants to run the loop on a system with 4 processors. STREAM_ARRAY_SIZE
is set to 256.

Tasks:

(a) The programmer is considering the following four schedulers:

• Static schedule
• Dynamic schedule: "self-scheduling"
• Dynamic schedule: "chunk scheduling", with chunk size 50
• Guided schedule with minimum chunk size of 15: "GSS(15)"

How many chunks will be generated by each scheduler? And what is the number of
iterations in each chunk?

(b) The programmer has found that each iteration executes for 1ns on the system. Based
on your analysis in part (a), what are the execution times on the system when using the
four scheduling schemes listed above?

(c) Now consider only self-scheduling and chunk scheduling. Assuming the dispatch over-
head for one iteration is 0.1 ns, and the dispatch overhead for scheduling a chunk of
size 50 is 4.5 ns, which of the two scheduling policies will execute faster?

(d) The programmer decides to use the static scheduling strategy for the STREAM COPY
problem and thinks the execution time using static schedule for problem size 256 is
satisfactory. Now they are able to access a larger system with 32 processors. However,
creating the parallel threads on the new system incurs overhead, which depends on
the number of processors (P). The time cost (overhead) is T = 1 ns + P × 0.5 ns. For
simplicity, assume that the new system offers unlimited memory bandwidth. What is
the largest problem size STREAM_ARRAY_SIZE that can be addressed on the new system
without increasing the execution time?

DAT400/DIT431 High Performance Parallel Programming Page 5 (15)

Answer to Problem 2:

Part (a)

• Static Schedule: 4 chunks, each 256/4 = 64 iterations

• Dynamic schedule: "self-scheduling": 256 chunk, 1 iteration per chunk

• Dynamic schedule: "chunk scheduling", with chunk size 50: 5 chunks with 50 iterations,
1 chunk with 6 iterations

• Guided schedule with minimum chunk size of 15: "GSS(15)": 9 chunks, number of
iterations: 64, 48, 36, 27, 21, 15, 15, 15, 15

Part (b)

• Static schedule: 64 × 1 = 64 ns

• Dynamic schedule: "self-scheduling": 256 / 4 × 1 = 64 ns

• Dynamic schedule: "chunk scheduling", with chunk size 50: 2 × 50 × 1 = 100 ns

• Guided schedule with minimum chunk size of 15: "GSS(15)": 36+ 15 +15 = 66 ns

Chunk assignment:

P1 0 (64) 64 64 64
P2 0 (48) 48 (15) 63 63
P3 0 (36) 36 (15) 51 (15) 66
P4 0 (27) 27 (21) 48 (15) 63

Part (c)

• Self-scheduling: 256 / 4 * (1 + 0.1) = 70.4 ns (winner)

• Chunk Scheduling: 100 + 2 * 4.5 = 109 ns

Part (d) Solution 1: considering no time cost when running on 4-processor system. Accord-
ing to Gustafson’s law, the execution time 64ns obtained in part (b) is constant. The time
cost = 1 + 32 * 0.5 = 17 ns on 32-processor system. Assume problem size is x, then:

x

32
+ 17ns = 64ns (1)

By solving equation 1, x = 1504.
Solution 2: If you instead consider the time cost on the 4-processor system, then the new
execution time becomes 64 + 1 + 4 * 0.5 = 67s. Assume problem size is x, then:

x

32
+ 17ns = 67ns (2)

By solving equation 2, x = 1600.

DAT400/DIT431 High Performance Parallel Programming Page 6 (15)

Problem 3 (10p)

Consider an application consisting of the following kernel:

#define NDIM 1000

void 2dfunc(float next[NDIM][NDIM],
float prev[NDIM][NDIM])

{
for(j=1;j<NDIM -1;j++){

for(i=1;i<NDIM -1;i++){
next[i][j] = -4.0* prev[i][j] +

prev[i][j-1] + prev[i][j+1] +
prev[i-1][j] + prev[i+1][j];

next[i][j] *= next[i][j];
}

}
}

Tasks:

(a) What is the arithmetic intensity (AI) of this code? Now consider a multicore chip in which
each core has a performance of 4 GFLOPS (single precision) and a shared memory
bus of 16GB/s. Using the simplified DRAM roofline model, what will be the performance
(execution time) if the code is run on a single core or on 8 cores? Note: a single float
consists of 4 bytes.

(b) The above kernel is included in an outer loop that evolves the execution over multiple
timesteps (see the code below). This outer loop includes a serial component that takes
0.5 ms. What is the upper limit to the speed-up (compared to a single core) according
to Amdahl’s law? For the above 8 core system, compute the speed-up over a single
core. Discuss, individually, the suitability of (i) executing the kernel on even more cores,
(ii) optimizing the kernel to achieve a higher AI, or (iii) optimizing the serial part of the
computation.

float a[NDIM][NDIM];
float b[NDIM][NDIM];

void run()
{
// assume input vectors are initialized
float *tmp , *future=b, *current=a;
for(int ts = 0; ts < NTIMESTEPS; ts++){

serial_computation(current);
2dfunc(future , current);

// swap pointers
tmp = future;
future = current;
current = tmp;
}

}

DAT400/DIT431 High Performance Parallel Programming Page 7 (15)

(c) Assume now that the developers are happy with the execution time of the current sys-
tem. They believe that by replacing the current chip with a larger multicore chip they will
be able to solve a larger problem in the same time. In 2-3 lines, discuss the suitability
of this proposal.

(d) Part of the serial_computation() in (b) consists of the following Matrix-vector multipli-
cation code:

int i, j, A[N][N], B[N], C[N];
for (i = 0; i < N; i++) {

C[i] = 0;
for (j = 0; j < N; j++) {

C[i] = C[i] + A[i][j] * B[j];
}

}

Propose two loop transformations (not involving parallelization) to improve the perfor-
mance of this code on a system with caches. Rewrite the loop code with the proposed
transformations.

Answers

Part (a) code has 6 flops and two memory accesses, so the AI is 6 flops / 8 bytes = 0.75
FLOPS/byte.
Performance on system with 1 core min(4 GFLOPS, 0.75 × 16GB/s) = min(4 GFLOPS, 12
GFLOPS) = 4 GFLOPS
Performance on system with 8 cores min(32 GFLOPS, 0.75 × 16GB/s) = min(32 GFLOPS,
12 GFLOPS) = 12 GFLOPS
The number of flops of the algorithm is 6 x NDIM x NDIM = 6000000. Hence execution times
are:
serial: 6e6 / 4e9 = 1.5e-3 seconds = 1.5 ms parallel: 6e6 / 12e9 = .5e-3 seconds = 0.5 ms

Part (b) serial fraction = .5 ms, ie 25% of total, the upper speed-up limit is 4x. For the case
of 8 cores, the speed-up is 2x.
Based on the previous result, the kernel is memory bound. Hence (i) is not a good option.
By improving the AI the performance of the kernel would yield approx 3x speed-up. Hence
option (ii) is reasonable. As the serial part is not negligible (25%), option (iii) should also be
considered to achieve scalability beyond a few cores.

Part (c) This is an application of Gustafson’s law. However, Gustafson’s law requires the
system to scale ideally. In this case, we are proposing the increase the number of cores, but
the memory bus remains the same. Hence, this will not work.

DAT400/DIT431 High Performance Parallel Programming Page 8 (15)

Part (d) Two transformations that will improve the caching behavior are loop blocking and
interchange (i.e. loop tiling). Given a block size M, the final resulting code is as follows:

for (i = 0; i < N; i += M) {
C[i... i+M-1] = 0;
for (j = 0; j < N; j += M) {

for (x = i; x < min(i + M, N); x++) {
for (y = j; y < min(j + M, N); y++) {

C[x] = C[x] + A[x][y] * B[y];
}

}
}

}

DAT400/DIT431 High Performance Parallel Programming Page 9 (15)

Problem 4 (10p)

The code in the below listing shows a serial implementation of the Cholesky decomposition.
There are three steps to perform a Cholesky decomposition on a matrix: (1) The upper
triangle of the matrix is replaced with zeroes, (2) the diagonal elements are calculated, and
(3) the elements below the diagonal are computed. The goal of this problem is to develop
an OpenMP implementation of the code.

double ** cholesky(double ** L, int n) {
int i, j, k;
for (j = 0; j < n; j++) {

#pragma omp parallel
{

//Step 1. Set upper triangle to 0
for (i = 0; i < j; i++)

L[i][j] = 0;
//Step 2: Calculate diagonal elements
//OMP Loop 1
// ________________________
for (k = 0; k < i; k++)

L[j][j] = L[j][j] - L[j][k] * L[j][k];
// Should be done by one thread
L[j][j] = sqrt(L[j][j]);
//Step 3: calculate Lower triangular elements
//OMP Loop 2
// ________________________
for (i = j+1; i < n; i++) {

for (k = 0; k < j; k++)
L[i][j] = L[i][j] - L[i][k] * L[j][k];

L[i][j] = L[i][j] / L[j][j];
}

}
}
return L;

}

Tasks:

(a) The code L[j][j] = sqrt(L[j][j]) should be executed by one thread. Show two
ways to achieve this using OpenMP.

(b) Write the missing OpenMP pragmas for the loops "OMP Loop 1" and "OMP Loop 2".
Explain your choices of shared and private list of variables.

(c) The loop "OMP Loop 1" contains a race condition. (1) Explain what causes the race
condition, and (2) provide at least two ways to solve the race condition.

(d) Finally we ask you to consider if the outer j-loop can be parallelized. Explain in less
than 3 lines why this is, or why this is not possible.

DAT400/DIT431 High Performance Parallel Programming Page 10 (15)

Answer to Problem 4:

Tasks:

(a) Two possible ways to execute the code by one thread are shown in the listing below.

(b) See the listing below.

(c) See the listing below.

(d) Loop j cannot be parallelized because values of loop variables (i and k) are depen-
dent on j and these variable are used as index to write on L, creating read after write
dependency among the threads.

// Solution of Task a
#pragma omp single
L[j][j] = sqrt(L[j][j]);
//OR
if(omp_get_thread_num () == 0) // enforcing only one thread

L[j][j] = sqrt(L[j][j]);
#pragma omp barrier

// Solution of Task b
//OMP Loop 1
#pragma omp for shared(L) private(k)

for (k = 0; k < i; k++)
....
//OMP Loop 2
#pragma omp for shared(L) private(i, k)
for (i = j+1; i < n; i++)

// Solution of task c
for(k = 0; k < i; k++)

#pragma omp critical
L[j][j] -= L[j][k] * L[j][k]; // Critical section.

//OR
for(k = 0; k < i; k++)

float a = L[j][k] * L[j][k];
#pragma omp atomic
L[j][j] -= a; // Critical section.

DAT400/DIT431 High Performance Parallel Programming Page 11 (15)

Problem 5 (10p)

The following code is used to approximate the solution of the Poisson problem ∇2u = f on
a square matrix:

void compute(float** anew , float** aold , int j_start , int j_end ,
int i_start , int i_end){

for(int j=j_start; j<j_end; ++j) {
for(int i=i_start; i<i_end; ++i)

anew[i][j] = (aold[i][j]+
aold[i-1][j] + aold[i+1][j] +
aold[i][j-1] + aold[i][j+1]) / 5.0;

}
}
int main() {

...
for (int time = 0; time < MAX_TIME; time ++){

compute(pnew , pold , j_start , j_end , i_start , i_end);
pold = pnew; // update pold for next iteration

}
...

}

This is a 2D 5-point stencil computation. The size of the matrix is N2 and it is divided among
P MPI processes as shown in the figure below.

Domain decomposition among P processes

Tasks:

(a) How many matrix elements are exchanged in each iteration? Provide the solution as a
function of N and P.

(b) Add the necessary MPI calls to main() in order to exchange information. Make sure it
does not cause deadlock.

(c) Now consider that each process checks for the convergence condition on its own region.
The computation should stop if all processes agree that the solution has converged. An
implementation of this is shown in the code below. Suggest an MPI implementation (in
Psuedo code) that breaks the time loop (line 17) if all processes indicate convergence.

DAT400/DIT431 High Performance Parallel Programming Page 12 (15)

1 int compute(float** anew , float** aold , int j_start ,
2 int j_end , int i_start , int i_end){
3 for(int j=j_start; j<j_end; ++j) {
4 for(int i=i_start; i<i_end; ++i)
5 anew[i][j] = (aold[i][j]+
6 aold[i-1][j] + aold[i+1][j] +
7 aold[i][j-1] + aold[i][j+1]) / 5.0;
8 }
9 if(delta(anew , aold) < 0.05)

10 return 1; // solution converged
11 else
12 return 0;
13 }
14
15 int main() {
16 ...
17 for (int time = 0; time < MAX_TIME; time ++){
18 converge = compute(pnew , pold , j_start , j_end ,
19 i_start , i_end);
20 if(converge) // each process should check convergence
21 break;
22 else
23 pold = pnew; // update pold for next iteration
24 }
25 ...
26 }

(d) Add the necessary code to measure the execution time in each iteration. How can you
make sure that all processes have completed before measuring the time?

A subset of MPI calls that are useful for this problem are shown below

int MPI_Send (const void *buf , int count , MPI_Datatype datatype ,
int dest , int tag , MPI_Comm comm)

int MPI_Recv (void *buf , int count , MPI_Datatype datatype ,
int dest , int tag , MPI_Comm comm , MPI_Status *status)

int MPI_Comm_rank(MPI_Comm comm , int *rank)
int MPI_Comm_size(MPI_Comm comm , int *size)
int MPI_Barrier(MPI_Comm comm)
int MPI_Bcast(void* data , int count , MPI_Datatype datatype ,

int root , MPI_Comm communicator)
int MPI_Gather(const void *sendbuf , int sendcount ,

MPI_Datatype sendtype , void *recvbuf , int recvcount ,
MPI_Datatype recvtype , int root , MPI_Comm comm)

int MPI_Allgather(const void *sendbuf , int sendcount ,
MPI_Datatype sendtype , void *recvbuf , int recvcount ,
MPI_Datatype recvtype , MPI_Comm comm)

int MPI_Alltoall(const void *sendbuf , int sendcount ,
MPI_Datatype sendtype , void *recvbuf , int recvcount ,
MPI_Datatype recvtype , MPI_Comm comm)

DAT400/DIT431 High Performance Parallel Programming Page 13 (15)

Answer to Problem 5:

(a) 2N elements need to be exchanged per process for exchanging first and last row of
their local matrix. However, first and last process will exchange only one row.

(b) The code below shows the solution using MPI. For the purpose of exam correction,
explaining a high-level pseudo-code will be considered enough as long as the main
calls to MPI routines and the exchange buffers are correctly identified.

(c) MPI_GATHER (convergence, root) followed by MPI_BROADCAST(convergence , root....).
Alternatively, use MPI_Allgather() to achieve the same effect.

(d) MPI_BARRIER should be called at the end of each iteration then MPI_RANK=0 mea-
sure the time.

// For this solution , we consider that the MPI processes operate on a local
// matrix called local_A. local_A has a size of N/p+2 rows of N elements
// N/p rows for computing the next value , and two rows to hold the neighboring rows
// Thus , each rank operates on local_A [1][] to local_A[N/p][]
// The neighboring rows are indexed as local_A [0] and local_A[N/p+1]
// The solution below attempts to solve the deadlock issue by making use of
// buffered sends and receives

main (){
// create a buffer for buffered sends , consisting of two rows of N elements
buffer = malloc (2*N*sizeof(float));

// in practice more space is needed , but this is not discussed
// in DAT400 so we consider that this is correct

MPI_Buffer_attach(buffer ,2*N*sizeof(float));

// Read local data for each process
// start computation
for (int time = 0; time < MAX_TIME; time ++){

j_start = 0; i_start = 0;
j_end = N; i_end = N/p;
int converge = compute(pnew , local_A , j_start , j_end , i_start , i_end);
// gather converge value from all processes and
// broadcast updated converge value

// Label ranks as upper and lower
upper = rank -1;
lower = rank +1;

if(upper > 0) MPI_Bsend (& local_A [1], N*sizeof(float), MPI_FLOAT ,
upper , 1, MPI_COMM_WORLD , status);

if(lower < p) MPI_Bsend (& local_A [(N/p)], N*sizeof(float), MPI_FLOAT ,
lower , 2, MPI_COMM_WORLD , status);

if(lower < p) MPI_Recv (& local_A [(N/p)+1], N*sizeof(float), MPI_FLOAT ,
lower , 1, MPI_COMM_WORLD , status);

if(upper > 0) MPI_Recv (& local_A [0], N*sizeof(float), MPI_FLOAT ,
upper , 2, MPI_COMM_WORLD , status);

}
}

DAT400/DIT431 High Performance Parallel Programming Page 14 (15)

Problem 6 (10p)

The CUDA program below computes the outer product of two vectors, u[] and v[]. The
outer product is a specific case of matrix multiplication in which the first matrix is a (column)
vector of N elements and the second matrix is the transpose of a vector (also called a row
vector) of N elements. When we multiply a N×1 matrix by a 1×N matrix, the result is an
N×N matrix, which we call the outer product of the two vectors. The code below calculates
the outer product of vector u[] with vector v[] and returns the answer as matrix A[][].

#define BLOCK_DIM 32
__global__ outer_product_kernel (float* u, float* v, float* A,

unsigned int N){
/* Perform the outer product of u and v,
* u is of size N x 1
* v is of size 1 x N
* A is of size N x N */
unsigned int row = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x * blockDim.x + threadIdx.x;
if(row <N && col <N){

A[row * N + col] = u[row] * v[col];
}

}

void outer_product (float* u, float* v, float* A, unsigned int N)
{

.....
// sizeof(float) = 4 bytes
cudaMalloc ((void **) &u_d , N * sizeof(float));
cudaMalloc ((void **) &v_d , N * sizeof(float));
cudaMalloc ((void **) &A_d , N * N * sizeof(float));
cudaMemcpy(1, 2, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(3, 4, N * sizeof(float), cudaMemcpyHostToDevice);
dim3 blockDim (5);
dim3 gridDim (6);
outer_product_kernel <<<gridDim , blockDim >>>(u_d , v_d , A_d , N);
cudaMemcpy(7, 8, N * N * sizeof(float), cudaMemcpyDeviceToHost);
.....

}

Tasks:

(a) Considering the CUDA implementation above. Fill in the missing code pieces 1 to 8 in
the function outer_product. You may find the following API helpful:
cudaMemcpy(Destination, Source, Size in bytes to copy, Type of transfer)

(b) Now we consider using tiling and shared memory to optimize the kernel. Each thread
block computes a tile of matrix A. Parts of vectors u[] and v[] are loaded from global
memory to shared memory. Assume the size of shared memory on the GPU is 256
bytes. How many elements of vectors u[] and v[] can be loaded into shared memory?

DAT400/DIT431 High Performance Parallel Programming Page 15 (15)

(c) Rewrite the CUDA kernel (outer_product_kernel) to make use of tiling and shared
memory as described in part (b).

Answer to Problem 6:

Part (a)

(1) u_d

(2) u

(3) v_d

(4) v

(5) BLOCK_DIM, BLOCK_DIM, 1 (Third dimension 1 is optional)

(6) (N-1)/BLOCK_DIM + 1, (N-1)/BLOCK_DIM + 1, 1 (Third dimension 1 is optional)

(7) A

(8) A_d

Part (b) 256 bytes / sizeof(float) 4 / 2 vectors = 32 elements per vector can fit into shared
memory.

Part (c)

#define BLOCK_DIM 32
__global__ outer_product_kernel (float* u, float* v, float* A, unsigned
int N){

__shared__ float shared_u[BLOCK_DIM];
__shared__ float shared_v[BLOCK_DIM];
unsigned int row = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x * blockDim.x + threadIdx.x;
for(int i = 0; i < ceil(N / BLOCK_DIM); i++){

shared_u[threadIdx.y] = u[threadIdx.y + i * BLOCK_DIM];
shared_v[threadIdx.x] = v[threadIdx.x + i * BLOCK_DIM];
__syncthreads ();
A[row * N + col] = shared_u[threadIdx.y] * shared_v[threadIdx.x];
__syncthreads ();

}
}

