
Domain Speci�c Languages of Mathematics

Course codes: DAT326 / DIT982

Patrik Jansson

2019-03-19

Contact Maximilian Algehed, Abhiroop Sarkar, Patrik Jansson (x5415)
Results Announced within 19 days
Exam check 2019-04-09 in EDIT 5468 at 12.15-12.45
Aids One textbook of your choice (e.g., Beta - Mathematics Handbook, or Rudin,

or Adams and Essex). No printouts, no lecture notes, no notebooks, etc.
Grades To pass you need a minimum of 5p on each question (1 to 4) and also

reach these grade limits: 3: >=48p, 4: >=65p, 5: >=83p, max: 100p

Remember to write legibly. Good luck!

For reference: the learning outcomes. Some are tested by the hand-ins, some by the written exam.

• Knowledge and understanding

� design and implement a DSL (Domain Speci�c Language) for a new domain

� organize areas of mathematics in DSL terms

� explain main concepts of elementary real and complex analysis, algebra, and linear
algebra

• Skills and abilities

� develop adequate notation for mathematical concepts

� perform calculational proofs

� use power series for solving di�erential equations

� use Laplace transforms for solving di�erential equations

• Judgement and approach

� discuss and compare di�erent software implementations of mathematical concepts

1

1. [15p] Consider the following quote (THEOREM 6 from Adams and Essex 2010):

The Chain Rule

If f(u) is di�erentiable at u = g(x), and g(x) is di�erentiable at x, then the
composite function f ◦ g(x) = f(g(x)) is di�erentiable at x, and

(f ◦ g)′(x) = f ′(g(x))g′(x).

(a) [10p] Give the types of the symbols involved: f, u, g, x, (◦) and D , where (D f = f ′).

(b) [5p] A point-free de�nition of a function does not mention the actual arguments it will
be applied to. Give a point-free de�nition of the Chain Rule: D (f ◦ g) = You can
use the �lifted� numeric operations (FunNumInst):

instance Num a ⇒ Num (x → a) where (+) = addF ; (∗) = mulF ; -- ...

addF ,mulF ::Num a ⇒ (x → a)→ (x → a)→ (x → a)
addF = liftOp (+) -- a point-free de�nition of �lifted +�
mulF = liftOp (∗) -- ... and lifted ∗
liftOp :: (a → b → c)→ (x → a)→ (x → b)→ (x → c)
liftOp op f g = λx → op (f x) (g x)

2. [30p] Calculational proof of syntactic di�erentiation.

Consider the following DSL for functional expressions:

data FunExp where
(:+:) :: FunExp → FunExp → FunExp
(:∗:) :: FunExp → FunExp → FunExp
(:◦:) :: FunExp → FunExp → FunExp
Exp :: FunExp
deriving Show

The intended meaning (the semantics) of elements of the FunExp type is functions:

type Func = R→ R
eval :: FunExp → Func
eval (e1 :+: e2) = eval e1 + eval e2 -- note the use of �lifted +�,
eval (e1 :∗: e2) = eval e1 ∗ eval e2 -- note the use of �lifted ∗�,
eval (e1 :◦: e2) = eval e1 ◦ eval e2
eval Exp = exp

On the semantics side we write D : Func → Func to denote computing the derivative. Your
task is to calculate and implement the function derive ::FunExp → FunExp on the syntactic
side. It is speci�ed by eval (derive e) D (eval e) for all e :: FunExp.

(a) [10p] Starting with the speci�cation, simplify eval (derive (f :∗: g)) step by step until
you reach the form eval dfg for some expression dfg ::FunExp suitable for the de�nition
of derive (f :∗: g) = dfg . Brie�y motivate each step of the calculation.

(b) [15p] Do the same for eval (derive (f :◦: g)).
(c) [5p] Use the results from the calculations to implement derive.

2

3. [30p] Algebraic structure: Group (lightly edited from the Wikipedia entry)

A group is a set, G , together with an operation · (called the group law of G) that
combines any two elements a and b to form another element, denoted a · b or ab.
To qualify as a group, the set and operation, (G , ·), must satisfy four requirements
known as the group axioms:

• Closure: For all a, b in G , the result of the operation, a · b, is also in G .

• Associativity: For all a, b and c in G , (a · b) · c = a · (b · c).
• Identity element: There exists an element e in G such that, for every element
a in G , the equation e · a = a · e = a holds.

• Inverse element: For each a in G , there exists an element b in G , commonly
denoted a−1, such that a · b = b · a = e, where e is the identity element.

(a) De�ne a type class Group that corresponds to the group structure.

(b) De�ne a datatype G v for the language of group expressions (with variables of type v)
and de�ne a Group instance for it. (These are expressions formed from applying the
group operations to the appropriate number of arguments, e.g., all the left hand sides
and right hand sides of the above equations.)

(c) Find and implement two other instances of the Group class.

(d) Give a type signature for, and de�ne, a general evaluator for G v expressions on the
basis of an assignment function.

(e) Specialise the evaluator to the two Group instances de�ned in (3c). Take three group
expressions of type G String , give the appropriate assignments and compute the results
of evaluating, in each case, the three expressions.

4. [25p] Consider the following di�erential equation:

2f(x) + 3f ′(x) + f ′′(x) = 2e−3x, f(0) = −2, f ′(0) = 0

(a) [10p] Solve the equation assuming that f can be expressed by a power series fs, that is,
use integ and the di�erential equation to express the relation between fs, fs ′, fs ′′, and
the power series rhs for the right hand side. What are the �rst four coe�cients of fs?

(b) [15p] Solve the equation using the Laplace transform. You should need this formula
(and the rules for linearity + derivative):

L (λt. eα∗t) s = 1/(s− α)

Show that your solution does indeed satisfy the three requirements.

3

