
CHALMERS TEKNISKA HÖGSKOLA 08:30–12:30, Friday, June 5, 2020.
Dept. of Computer Science and Engineering Parallel Functional Programming

DAT280, DIT261

Exam in Parallel Functional Programming
08:30–12:30, Friday, June 5, 2020.
Examiners / Teachers :
John Hughes (rjmh@chalmers.se)
Mary Sheeran (mary.sheeran@chalmers.se)

Attempt all questions. 24 points are required to pass (grade 3), 36 points for grade 4, and 48 points for
grade 5.
Our expectations. We expect you to write, run and benchmark programs in Haskell and Erlang during
the exam. Success in this will increase your chances of passing. However, it is important not to get stuck
in small technical details (such as syntax), and to think carefully about how you use your time during the
exam.
Questions for the examiners or teachers Write “Question for examiner” in the zoom chat. You will be
transferred to the examiner’s breakout room in due course.
Permitted Aids. All aids are permitted. If you include code or text from any source (a book, paper, slides,
web page etc.), cite your source clearly. Communication with others, including digital communication, is
strictly forbidden.
Please be specific and concise when answering questions. Short, polished text beats rambling,
generic text. Keep to the point of the question! Nonsense will damage the overall impression, even if other
parts of your answer are reasonable.
What to hand in. For each question, submit one or more files containing your answer. Each file should be
a .hs or .erl file containing code and comments, a pdf containing text and diagrams (possibly scanned), or
a plain text file if needed. Zip together all of your files and submit at the end of the exam. Mark question
numbers clearly!
How to hand in your solutions. You should submit via Canvas if possible. If, for some reason, Canvas
is not available at the end of the exam, submit your solution via Fire (as for labs). If that does not work
either, submit by email to mary.sheeran@chalmers.se, with the exact title Exam Submission TDA280 for
Chalmers students and Exam Submission DIT261 for GU students. It is your responsibility to keep within
the allotted time. If you have extended time, let the Examiner (Mary) know in advance and submit exactly
as above, and within your extended time period.

1

1. Parallel Functional Programming 10 points

(a) In what way does shared mutable data cause a problem in parallel programming? 1 point

(b) What is the main advantage of the Strategies approach to parallel programming in Haskell? 1 point

(c) “After parallelization, any program should be able to run N times faster on N cores.” Is this true
or false? Explain your answer briefly (for example, with reference to Amdahl’s Law). 1 point

(d) Pick a small Futhark function from your Lab C solution. Include both the code and your expla-
nation of what it does and what the types mean. 1 point

(e) Haskell and Erlang both use garbage collection to recycle memory, but they work rather differently.
What aspect of garbage collection may cause a problem in real-time systems, and how does
Erlang’s VM design mitigate that problem? 1 point

(f) After an Erlang process sends a message, using

Pid ! Msg,

does the sending process continue its execution

i. immediately,

ii. once the message is safely delivered to the recipient’s mailbox,

iii. once the recipient has received the message from its mailbox,

iv. or once the recipient has sent a reply? 1 point

(g) What is a network partition? 1 point

(h) Explain the CAP theorem: what do C, A and P refer to, and what does the theorem state? 1 point

(i) Suppose three V-nodes in a Dynamo-style eventually consistent database hold three different val-
ues for the same key, with the vector clocks shown:

Value Vector clock
1 [{a,1},{b,2}]

2 [{a,2},{b,2},{c,1}]

3 [{b,1},{c,1}]

i. Which values, if any, are in conflict? 1 point

ii. After the database reaches an eventually consistent state, what value will the key be associated
with? 1 point

2

2. Scalability 2 points

The following Erlang code implements a simple server whose purpose is just to deliver a different
number every time unique(Server) is called.

-module(unique).

-export([unique_server/0,unique/1).

unique_server() ->

spawn_link(fun() ->

unique_server(0)

end).

unique_server(N) ->

receive

{get_unique,Pid,Ref} ->

Pid ! {unique,N,Ref},

unique_server(N+1)

end.

unique(Server) ->

Ref = make_ref(),

Server ! {get_unique,self(),Ref},

receive {unique,N,Ref} -> N end.

For example, a sample run in the Erlang shell might be as follows:

11> Server = unique:unique_server().

<0.56.0>

12> [unique:unique(Server) || _ <- lists:seq(0,10)].

[0,1,2,3,4,5,6,7,8,9,10]

Suppose that profiling a system whose performance is poor shows that the unique number server has
very many messages in its mailbox.

(a) How would you interpret the large number of messages in this mailbox? 1 point

(b) Suggest a way to mitigate this scalability problem. (Do not write code, just explain your idea). 1 point

3

3. Work and Depth (and control of granularity) 16 points

Answer in files called reduce.hs for code, and reduce.pdf for the rest.

(a) A sequential left fold operating on a list in Haskell operates on the elements of the list one after
another, from left to right. What are the work and depth (or span) of such a fold? Explain your
answer. 2 points

(b) When we have an associative operator, we can instead make use of parallelism and use a tree
shaped fold (often called parallel reduce). Explain why the associativity of the operator enables
the use of parallelism. 2 points

(c) In Haskell, using the Par monad, complete the definition of the following parallel reduction func-
tion: 3 points

parReduce :: NFData a => (a -> a -> a) -> [a] -> Par a

parReduce f [a] = ...

parReduce f as =

let halfn = div (length as) 2 in

let (ys,zs) = splitAt halfn as in

do

i <- spawn $...

...

return ...

(d) What are the work and depth of the new tree shaped reduce? 2 points

Would you expect good performance from the above function? Explain your answer. 1 point

Whatever you answered, modify the function in two different ways to enable control of task
granularity.

i. Add a depth parameter and revert to a sequential fold when it reaches zero. 2 points

ii. Chunk the input data and run several sequential folds in parallel, before completing the
computation. (Hint: You may wish to make use of the strict sequential fold, foldl1’ provided
in Data.List. You may simply use parMap without defining it.) 2 points

iii. Benchmark both versions and report on performance. Use an input list size that is somehow
related to the last four digits of your personal number. If you don’t have a personal number,
make up four digits! (Hint: Be careful not to spend too much time on this if things go wrong.
You will need to dream up a reasonably expensive binary operator. (+) is too small, for
instance. Indicate whether or not your operator is actually associative.) 2 points

4

4. Scan 12 points

Answer in files called scan.hs for code, and scan.pdf for the rest.

(a) Blelloch’s work on NESL placed great emphasis on the importance of parallel prefix sum, or parallel
scan. What are the work and depth (or span) for this parallel (pre)scan in NESL? Explain your
answer. 2 points

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

let e = even_elts(a);

o = odd_elts(a);

s = scan_op(op,identity,{op(e,o): e in e; o in o})

in interleave(s,{op(s,e): s in s; e in e});

(b) A naive implementation of the Blelloch scan (or similar) in Haskell would perform poorly due to
lack of control of task granularity. We will here explore a chunking approach.

i. A seqential scan has an “accumulator” that makes it difficult to do simple chunking. One
way forward is to first make a useful building block in the form of a sequential scan that
explicitly takes an accumulator.

scanAcc f (m,(x:xs)) = scanl1 f ((f m x):xs)

*Main> scanl1 (+) [1..5]

[1,3,6,10,15]

*Main> scanAcc (+) (3,[1..5])

[4,6,9,13,18]

Now, we would like to implement a scan using parMap of scanAcc. But the question is how
do we figure out what the first inputs to the calls of scanAcc should be, and how can we
compute them as cheaply as we can, and in parallel? You are asked to solve this problem
and write a chunking implementation of parallel scan by completing the following definition
(or otherwise): 4 points

parScanChunk :: (Num a, NFData a) => Int -> (a -> a -> a) -> [a] -> Par [a]

parScanChunk n f as = let aas = chunk n as in

do ms <- ... aas

... parMap (scanAcc f) ...

(Hint: I have added a Num a constraint so that the accumulator for the leftmost scanAcc can
be 0. Ignore this if you wish. So what should be the first inputs to all the other scanAccs?
Think about how the last element of the output of a scan is computed. Ignoring parallelism
for a moment, the following examples may be helpful.

*Main> map (scanl1 (+)) . chunk 8 $ [1..100]

[[1,3,6,10,15,21,28,36]

,[9,19,30,42,55,69,84,100]

,[17,35,54,74,95,117,140,164]

,[25,51,78,106,135,165,196,228]

,[33,67,102,138,175,213,252,292]

,[41,83,126,170,215,261,308,356]

,[49,99,150,202,255,309,364,420]

,[57,115,174,234,295,357,420,484]

,[65,131,198,266,335,405,476,548]

,[73,147,222,298,375,453,532,612]

,[81,163,246,330,415,501,588,676]

,[89,179,270,362,455,549,644,740]

,[97,195,294,394]]

5

*Main> scanl1 (+) [1..100]

[1,3,6,10,15,21,28,36

,45,55,66,78,91,105,120,136

,153,171,190,210,231,253,276,300

,325,351,378,406,435,465,496,528

,561,595,630,666,703,741,780,820

,861,903,946,990,1035,1081,1128,1176

,1225,1275,1326,1378,1431,1485,1540,1596

,1653,1711,1770,1830,1891,1953,2016,2080

,2145,2211,2278,2346,2415,2485,2556,2628

,2701,2775,2850,2926,3003,3081,3160,3240

,3321,3403,3486,3570,3655,3741,3828,3916

,4005,4095,4186,4278,4371,4465,4560,4656

,4753,4851,4950,5050]

)

ii. Benchmark your function for various chunk sizes, again with an input list whose length is
related to the last four digits of your personal number, and comment on the results. 2 points

(c) Now, let us think a bit more abstractly about work and depth! Studying work (the time taken
on one processor, T1) and depth (the time taken on an infinite number of processors, T∞) gives
us insights about the time taken on n processors, Tn.

i. Explain in your own words what we know of the form Tn ≥??? 2 points

ii. Explain in your own words what we know of the form Tn ≤??? (via Brent’s theorem). 2 points

6

5. Parallel Erlang Programming 20 points

Copy the following code into pmap.erl, and compile it.

-module(pmap).

-compile(export_all).

map(_,[]) -> [];

map(F,[X|Xs]) -> [F(X)|map(F,Xs)].

%% Test code--do not touch

test(F) ->

Case = fun(N) -> [rand:uniform(200) || _ <- lists:seq(1,N)] end,

Test = fun(N) -> Xs = Case(N),

{T1,Ys} = timer:tc(fun()->map(fun fac/1,Xs) end),

{T2,Zs} = timer:tc(fun()->?MODULE:F(fun fac/1,Xs) end),

if Ys==Zs ->

[io:format("Speedup at size ~p: ~px\n",[N,T1/T2])

|| T2/=0];

true ->

io:format("Buggy!\n ~p\n/=\n ~p\n",[Zs,Ys]),

exit(buggy)

end,

T1+T2<5000000

end,

Test(10)

andalso Test(100)

andalso Test(1000)

andalso Test(3000)

andalso Test(10000)

andalso Test(30000)

andalso Test(100000)

andalso Test(300000)

andalso Test(1000000)

andalso Test(3000000)

andalso Test(10000000).

fac(0) -> 1;

fac(N) -> N*fac(N-1).

This code defines a sequential version of the map function, along with some test and benchmarking
code. Run the tests as follows:

147> pmap:test(map).

Speedup at size 100: 0.0x

Speedup at size 3000: 1.9375x

Speedup at size 10000: 0.9841269841269841x

Speedup at size 30000: 0.9999950738916256x

Speedup at size 100000: 0.9781644514766397x

Speedup at size 300000: 1.0073278110948922x

Speedup at size 1000000: 0.9788467640395393x

false

Calling pmap:test(Name) tests a function called Name in the pmap module, checking that its results
are the same as map returns, and displaying a table of speedups for inputs of varying sizes. Here you
see example output when the function we test is map itself: of course its results are correct, and the

7

measured “speedup” is close to 1. The benchmarks may take up to about 20 seconds to run, and the
measured speedups are not very accurate—don’t worry about this, we just don’t have time in an exam
to run enough benchmarks to make very accurate measurements.

In this question, you will extend this file with several parallel implementations of map. You should
submit your final version of the file as part of your answer. Each new function you write can be based
on the previous one; copy-and-paste the previous function, rename it, and work from there. Make sure
that you keep every function in your file, and separate the parts of your answer clearly in the file—for
example, as follows:

%% ======== part (b) ===

Make sure the file you submit is compileable, and that we can run these tests for the functions you
write. Place the other parts of your answer in a file called Q5-answer.txt.

Hint: You may find the functions seq, sort, split and zip from the lists module useful in an-
swering this question. Documentation of these functions can be found here:
https://erlang.org/doc/man/lists.html.

(a) The code you have been given for map is entirely sequential. Use Erlang’s parallel programming
features to define a function pmap(F,Xs) which computes the same result as map(F,Xs), but
performs the calls to F in parallel (running each call to F in a different process). Make sure
your pmap returns the elements of the result in the same order as map, by using selective receive
to receive the elements in the correct order. Add your definition of pmap to pmap.erl, and
test it using pmap:test(pmap). (Do not change the test code: this will compare your new
implementation to the existing map implementation). Copy-and-paste the output of your test run
into Q5-answer.txt (clearly labelled).

Does your parallel code run faster or slower than the sequential map? If it runs slower, how would
you explain this? 4 points

(b) Another way to ensure the elements of your result are in the correct order is to pair each one with
its index in the list, receive them in any order, and sort them after receipt, using lists:sort

(which orders pairs lexicographically, so that {I,X} < {J,Y} if I < J, or I==J and X < Y). Add
a new parallel map function to your file, pmap2, which works in this way. Test your function using
pmap:test(pmap2), and copy-and-paste the output into Q5-answer.txt.

Is there a significant performance difference between pmap and pmap2? If so, how would you
explain it? 4 points

(c) Why is task granularity important in parallel programming? Explain the problems that can arise
both when task granularity is too large, and when it is too small. 2 points

(d) Is the task granularity in your implementation of pmap2 likely to be too large, just right, or too
small? Why? 1 point

(e) Add another parallel version of map to pmap.erl, called pmap3, which uses a larger task granularity,
performing ten calls to F in each process. Run the tests, and copy-and-paste the output into
Q5-answer.txt. How does performance change? 4 points

(f) What advantages might there be in limiting the number of parallel processes working on a task
at the same time? 1 point

(g) Add a fourth parallel version of map to your file, called pmap4, which uses a larger task granularity
just like pmap3, but also limits the number of simultaneously running worker processes to the num-
ber of hardware threads available (which you can find using erlang:system_info(schedulers)).
Test your function using pmap:test(pmap4), and copy-and-paste the results into Q5-answer.txt.
How does performance compare to pmap3? 4 points

8

