CHALMERS TEKNISKA HOGSKOLA 14:00, March 14th, 2013.
Dept. of Computer Science and Engineering Programming Paradigms
Jean-Philippe Bernardy DAT121 / DIT331(GU)

Exam in Programming Paradigms

14:00, March 14th, 2013.
Examiner: Jean-Philippe Bernardy

Permitted aids: Pen and paper.

There are 6 questions: each worth 10 points. The total sum is 60 points.

Some questions come with remarks: you must take those into account. Some
questions come with hints: you may ignore those.

You will be asked to write programs in various paradigms. Choose the language
appropriately in each case, and indicate which you choose at the beginning of
yOur answer.

Paradigm Acceptable language
Imperative C or (an OO language where you refrain to use Objects)
Object oriented C++ or Java
Functional Haskell, ML
Concurrent Erlang, Concurrent-Haskell
Logic Prolog, Curry

You may also use pseudo-code resembling an actual language in the relevant list.
In that case, make sure your code can only be interpreted in the way you intent
(the responsibility lies with you). In particular, in the case of functional/logic
languages, omitting parentheses is NOT acceptable: a b c is not acceptable
pseudo-code for a (b c).

Chalmers: 24 points is required to pass (grade 3), 36 points is required for
grade 4, and 48 points is required for grade 5.

GU: 24 points is required to pass (grade G) and 42 points is required for grade
VG.



1 Objects as records
Consider the following class hierarchy written in a Java-like language:

class A {
float x;
float y;
}s;

class B {
int n;
void f(A p) {
<BODY 1>
};

};

class C extends B {
int m;
// the following method overrides f from class B
void f(A p) {
<BODY 2>
}
s

Translate the above classes to records with explicit method pointers.

Demonstrate your solution by drawing a diagram of a memory area correspond-
ing to an object of type...

o A 1 points
e B. 3 points
e C. 6 points

Remarks: make sure all the fields are initialized to some value. The values can
be arbitrary but must be consistent with the idea of the translation to records
with explicit method pointers. If your solution contains pointers, you must show
what they point to.

Answer:

struct A {
float x = 0
float y = 0

}

struct B {



int n = 0

void* f(B* this, A* p) = <BODY1>;
}
struct C {
int n = 0
void* f(C* this, A* p) = <BODY2>;
int m;
}



2 Calls and recursion
Consider the following function hanoi, which solves the Hanoi tower problem.

void hanoi(int n,int s,int i,int d) {
if (n>0) {
hanoi(n-1,s,d,i);
move(s,d);
hanoi(n-1,1i,s,d);
}
}

Solve the following two exercises independently.

1. Replace the last recursive call by a while loop (tail-call elimination). Re-
mark: do not use a stack. 4 points

Answer:

void move_many(int n, int source, int intermediate, int target) {
while (n > 0) {
move_many (n-1,source ,target, intermediate);
move_disk(source,target) ;
n=n1;
swap(source,intermediate) ;
}
}

2. Assume a stack; with the usual push, pop and top functions. Transform
the original hanoi function by making the calls explicit. Remarks: use
gotos, and stack to transform each recursive call. Transform the original
hanoi function, not the one obtained in the previous exercise. 6 points

Answer:

void move_many(int n, int s, int i, int d) {
push(n,s,i,d,0);
call:
if (stk->n!=0) {
push(stk->n-1,stk->s,stk->1i,stk->d,1);
goto call;
locl:
move_disk(stk->s,stk->d);
push(stk->n-1,stk->i,stk->s,stk->d,2);;
goto call;
loc2:



}

caller = stk->caller;
pop Q) ;

if (caller == 1) goto locl;
if (caller == 2) goto loc2;



3 Pattern matching Higher-Order Abstractions

Assume the following Haskell data type:
data List = Nil | Cons Int List
and consider the following code:

map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

reverse Nil = Nil
reverse (Cons x xs) = append (reverse xs) (Cons x Nil)

Express each of the functions above (map, append, reverse) in terms of the
higher-order function fold provided below. Remarks: you may not use recur-
sion directly in your solution. The type of the functions should remain the
same.

fold k £ Nil = k
fold k £ (Cons x xs) = f x (fold k f xs)

Answer:

map £ = fold Nil (\x -> Comns (f x))
append xs ys = fold ys Cons xs
reverse = fold Nil (\x xs -> append xs (Cons x Nil))

3,3,4 points



4 Closures

Consider the following partial implementation of the “Observer” pattern in a
Java-like language:

interface Observer {
bool notify(Event e);
}

class MyPrintAction implements Observer {
String text;

bool notify(Event e) {
print ("Got the event:" + e);
print(text);
return true;

}

class Button {
List<0Observer> os;

void onPress (Observer 1) {
os.add(1);
}
}

And the example user code:
button.onPress(new MyPrintAction("Button pressed."));

Assuming that the interface Observer represents a closure, how could this pat-
tern be implemented naturally in a language with native support for higher-order
functions?

Demonstrate your answer by translating the pattern to Haskell as follows:

1. Give the Haskell type corresponding to the Observer interface.
2. Give the type of the translated onPress function. (A Haskell type)
3. Translate the MyPrintAction class.

4. Translate the example call to onPress.

Hints: You may assume a Haskell function print which prints objects of any
type. You may (if you prefer) answer questions 3. and 4. in a single piece of
code.

3 points
2 points
2 points

3 points



Answer:

type Observer = Event -> IO Bool
onPress :: Button -> Observer -> I0 ()

myPrintAction text e = do
print ("Got the event" ++ show e)
print text

example = onPress button (myPrintAction "button pressed");



5 Variable-managing process

Assume a language without pointers nor variables, but support for concurrency.
In particular, assume primitives for creating processes and channels, and prim-
itives for reading and writing to to channels. For example C++-style:

Chan<A> newChan() ;

A readChan(Chan<A> c);

void writeChan(Chan<A> c,A x);
void forkProcess(*void());

or Haskell-style:

newChan :: I0 (Chan a)

readChan :: Chan a -> I0 a
writeChan :: Chan a -> a -> I0 ()
forkProcess :: I0 (O -> I0 ()

Your task is to simulate references to mutable variables using the above primi-
tives. This can be done be using a process that manages the variable state.

1. Define the representation for a variable of type “reference to Integer”.
Name this type Reference.

2. Write the code for the process that manages the variable state.

3. Write the code for primitives to create, read and write references. Their
type should be:

Reference newRef();
int readRef (Reference);
void writeRef (Reference, int);

or Haskell-style:

newRef :: I0 Reference
readRef :: Reference -> I0 Int
writeRef :: Reference -> Int -> I0 ()

Hint: The channels can transmit any type of information, including references
to channels.

Remark: You can use either a functional or imperative language to write your
answer, however you may not use any global variable nor primitive reference
types in it.

3 points
4 points

3 points



Answer:

data Command a = Get (Chan a) | Set a
type Variable a = Chan (Command a)

handler :: Variable a -> a -> I0 ()
handler v a = do
command <- readChan v
case command of
Set a’ -> handler v a’
Get ¢ -> do
writeChan c a
handler v a

newVariable :: a -> I0 (Variable a)
newVariable a = do

¢ <- newChan

forkI0O (handler c a)

return c

get :: Variable a -> I0 a
get v = do
¢ <- newChan
writeChan v (Get c)
readChan c

set :: Variable a -> a -> I0 ()

set v a = do
writeChan v (Set a)

10



6 Relations

Consider the following Haskell code:

data List = Nil | Cons Int List
data Tree Tip | Bin Tree Int Tree

append :: List -> List -> List
append Nil xs = xs
append (Cons x xs) ys = Cons x (append xs ys)

flatten :: Tree -> List
flatten Tip = Nil
flatten (Bin a x b) = append (flatten a) (Cons x (flatten b))

Translate the above functions to relations flatten’ and append’ such that:

append’ x y z is equivalent to append x y ==

flatten’ x y is equivalent to flatten x ==y
1. Write the type of the relations flatten’ and append’. 4 points
2. Write their code. 6 points

Remark: you cannot use any other helper function in your answer, only con-
structors and relations. The types should be written in Curry or Haskell-like
syntax.

You may write the code in Curry syntax or Prolog syntax.

Answer:
append :: List -> List -> List —-> Success
append [] yS 28 = ys =:= zs
append (x:xs) ys zs = append xs ys zs’ &
zs =:= x:z8’
where zs’ free
flatten :: Tree -> List -> Success

flatten Tip Nil = success
flatten (Bin a x b) zs = flatten a xs & flatten b ys & append xs (Cons x ys) zs
where xs, ys free

11



