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The following are suggested solutions to the problems. It must be noted that other solutions may be
possible, and that approximate solutions will give at least partial credit as long as the approximations
are reasonable (just as in real life!).

1. This type of converter is known as a algorithmic converter. It is conceptually simple to extend
to high resolutions, but several real-life effects limit it to medium-performance applications, as
will be seen below.

(a) Assuming no undersampling, a signal frequency of 10 MHz means a sample rate of at least
20 MHz. A clock frequency of 300 MHz then means that 15 bit decisions can be made before
the next sample arrives. A 15-bit resolution corresponds to an SNDR of 6.02×15+1.76 = 92
dB for a full-scale sinewave.

(b) We can easily calculate the sample jitter that would give an error equal to the quantization
error above:

92 = −20 log(2π · 107 · ∆tRMS)

∆tRMS = 4 × 10−13

That is, the RMS value of the sample-time error must be less than half a picosecond.
Additionally, if these errors were combined, we could expect an overall SNDR of 92−3 = 89
dB.

(c) In a binary-scaling architecture such as this one, the accuracy of the first multiplication
by two is critical: a one-percent error here will be larger than one unit in the seventh bit
(since 1/27 = 1/128 < 0.01). Likewise, 15-bit precision would require an accuracy of no
worse than 1/215 = 1/32768 ≈ 3 × 10−5. It would be very difficult to reach such precision
of passive components without laser trimming or active dynamic trimming.

(d) We need to know the size of the sampling capacitance. We don’t know the matching
properties of the process, so knowledge about matching requirements does not help us to
determine the capacitance. However, the sample capacitance is in any case limited by the
kT/C noise:

CS >
12kT

V 2
FS

· 22N =
1

V 2
FS

· 52pF

To be able to drive this capacitance across the full-scale voltage each clock cycle, the
required power is:

P = V 2
FS · CS · fck = 52 × 10−12 · 3 × 108 = 156 × 10−4 = 15mW
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The total dissipation requirement for the entire converter is likely to be at least 200 times
larger, so might be in the neighborhood of 3W.

2. The Σ∆ DAC may be viewed as a variation of the ADC, with the analog voltages replaced with
high-precision digital values. The resolution of the final DAC then corresponds to the quantizer
resolution in the ADC case.

(a) The system bandwidth is 15 MHz; thus, the Nyquist frequency is 30 MHz. The final DAC
can perform 900M conversions per second, so the maximum OSR is 900/30 = 30. Based
on linear loop models, we know (Maloberti, Eq. 6.16) that

SNRPEAK ,1 = 6.02 ·N + 1.76 − 5.17 + 9.03 · log2(OSR1) = 6.02 ·N + 40.89

The SNDR is 53 dB at 2 dB below the full-scale output, which would correspond to 55 dB
at full scale. Thus, the minimum resolution in bits1 would be given by

N =

⌈
55 − 40.89

6.02

⌉
= 3

(b) The second-order-loop peak SNR is given in Maloberti Eq. 6.25 as

SNRPEAK ,2 = 6.02 ·N + 1.76 − 12.9 + 15.05 · log2(OSR2)

Equalizing the two SNR expressions and solving for OSR2 yields

OSR2 = 11

Thus, it appears that the clock rate might be reduced by a factor of 30/11 = 2.72.

(c) A 3-bit converter may be built from 23− 1 = 7 sources; the binary value j, 0 ≤ j < 8 would
then cause the “first” j sources to be switched in:

itot =
j∑

k=1

ik

In this case, the currents are not all equal to the nominal unit current inom; rather, the
current values depend on k. Let ξ be the ratio of the first and the last of these; then:

itot =
j∑

k=1

inom · (1 + k · ξ
7

) = (1)

= inom(j +
ξ

7

j∑
k=1

k) = (2)

= inom(j +
ξ

7
· (j + 1)j

2
) = (3)

= inom(j +
ξ

7
(
j2

2
+
j

2
)) ≈ (4)

≈ inom(j + j2
ξ

14
) (5)

where the second (square) term is the error.

Clearly itot is not a linear function of j, and the error has a square characteristic. If the
gain error is disregarded, the largest deviation from the ideal straight line occurs at the
middle of the range, and is one fourth of the full-scale error (at j = 7), that is

1

4
inom

49

14
ξ = inom

49

56
ξ

1In task 2c further down, it is revealed that the DAC is implemented with a thermometer-coded row of sources; thus
the number of levels is really not restricted to a power of two. But “3 bits” will be good for full marks here.
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which must be the peak-to-peak value (twice the amplitude) of the error (at twice the
frequency of an input sine) for a full-scale input signal. Thus, the error power at full scale
would be(

1

2
inom

49

56
ξ

)2

/2 ≈ 0.095i2nomξ
2

The full-scale signal power is given by the full-range amplitude:

3.52i2nom
2

= 6.125i2nom

Finally, the SNDR is given by:

6.125i2nom
0.095i2nomξ

2
≈ 64/ξ2

The target SNDR value of 55 dB corresponds to a power ratio of 3.16 × 105, which corre-
sponds to ξ = 0.014. Thus, the ratio between the first and the last current values must be
no larger than 1.4%.

3. (a) R2 and R3 determine the DC gain through the expression ADC = 1 + R3/R2. Unless Q is
small, it may be approximated as the ratio of the peak gain Apeak and the DC gain of the
filter section. Thus,

Q =
Apeak

ADC

and also

Q =
1

3 −ADC

so

Apeak = Q ·ADC =
ADC

3 −ADC

and

ADC =
3Apeak

1 +Apeak

The nominal magnitude function of the filter just touches the upper passband gain limit at
the peak of the magnitude function of the highest-Q filter section. This is the point that
would be most affected by a Q-value change. A 0.5-dB change would mean a magnitude
change by a factor of 100.5/20 = 1.06, i.e., by 6%. The nominal value for ADC would
give Apeak = 12.6; a 6% increase for Apeak would give Apeak = 13.39 and ADC = 2.79, so
R3/R2 = 1.79. Clearly, the matching requirements for R3 and R4 are very strict, at 1 part
in 179, or 0.56%.

(b) The limited amplifier gain causes a reduction in overall gain due the discrepancy, given by

D =
Aβ

1 +Aβ

As raw gain falls off at higher frequencies, the worst case is at the passband edge, at
5kHz. Due to the limited GBW, at that frequency, the raw gain of the op-amp is roughly
3000/5 = 600.

At the passband edge, the filter-section gain will be 2dB below the peak (a factor of 80%),
so 0.8 · 12.6 = 10.0 . With A = 600 and β = 0.1, D = 0.983, so the gain can be expected to
be 1.7% lower than what β set it to, even with perfect resistor values. A gain increase as
described in the previous task would cause violation at the peak gain before the passband
edge would be cleared.
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4. (a) The two sinewaves have different frequencies, so the maximum and minimum values of the
two sinewaves will sometimes be in phase and sometimes out of phase. In the former case,
their combined amplitudes will have twice the amplitude of each signal on its own, so each
signal has one-half of the full-scale-sinewave amplitude. Thus, their powers are one fourth
of the full-scale-sinewave power.

(b) As we seek a ratio between the intended signal and its distortion products, and as all terms
in the expression for y(t) contain G as a factor, we may without limitation assume that
G = 1. We then have

y(t) = (x(t) − α · (x(t))3

Since x(t) = 1
2 sinω1t+ 1

2 sinω2t, we have

(x(t))3 =
1

23

(
sin3 ω1t+ 3 sin2 ω1t sinω2t+ 3 sinω1t sin2 ω2t+ sin3 ω2t

)
Since sin 3φ = 3 sinφ − 4 sin3 φ, the first and last terms will cause out-of-band frequency
components which we ignore, plus a contribution at ω1 and ω2 respectively; since α is small,
we ignore also the latter next to the linear term in the first equation.

The remaining terms in the second equation have the form sin2 ωat ·sinωbt. Since sin2 ωat =
(1 − cos 2ωat)/2, each term causes a contribution at one of the signal frequencies (ignored
as above), an out-of-band term (ignored as above), and a term with frequency 2ωa − ωb,
which is close to the inteded frequencies and cannot be filtered out. These are the sideband
error terms to include in the SNDR. The amplitude of each of these two terms is

α · 1

8
· 3 · 1

2
= α

3

16

The power of each term is then

α2 9

256

The SNDR is the power at the original frequencies (consisting of 2 equal parts) divided by
the power of the sidebands (also 2 equal parts):

SNDR =
1
4 · 1

2

α2 9
256

=
1

α2
· 64

9
≈ 7.11

α2

As an example, with α = 0.01, then SNDR = 7.11
0.0001 = 7.11 × 104, which corresponds to

about 48 dB.

(c) The power of the quantization error should be no larger than the power of the sideband
tones:

2 · α2 9

256
≥ ∆2

12
=

1

12
·
(

2

2N

)2

=
1

3
· 2−2N

which specifies the minimum resolution N as a function of α. As an example, α = 0.01
gives a minimum N value of 8 (which seems to agree with the SNDR value in the previous
task).


