

 2020-08-14

Exam in DAT 105 (DIT 051) Computer Architecture

Time: August 18, 14-18 (Canvas)

Person in charge of the exam: Per Stenström, Phone: 0730-346 340

Supporting material/tools: Chalmers approved calculator, textbook.

Exam Review: More information on this will be available via Canvas

Grading intervals:

• Fail: Result < 24
• Grade 3: 24 <= Result < 36
• Grade 4: 36 <= Result < 48
• Grade 5: 48 <= Result

NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam results for
approved exams used solely for higher grades.

NOTE 2: Answers must be given in English

NOTE 3: Read the document Instructions for Canvas exam, available at Canvas,
carefully

GOOD LUCK!
Per Stenström

 Page 2(12)

 2

CHALMERS UNIVERSITY OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
412 96 Göteborg
Visiting address: Rännvägen 5
Phone: 031-772 1761 Fax: 031-772 3663
Org. Nr: 556479-5598
E-mail: pers@chalmers.se

 [General disclaimer: If you feel that sufficient facts are not provided to solve a problem,
either 1) ask the teacher when he visits the exam, or 2) make your own additional
assumptions. Additional assumptions will be accepted if they are reasonable and
required to solve the problem. Always make sure to motivate your answers.]

ASSIGNMENT 1

You are supposed to characterize the performance of two computers, A and B, with data regarding
three programs P1, P2 and P3.

The following data has been collected.

Assumptions for computer model A
Execution time for programs P1, P2 and P3: 1s, 10s and 2s, respectively
Number of instruction cache accesses: 108, 109 and 2 x 108 for P1, P2 and P3, resp.
Clocks per instruction assuming an
instruction/data caches have zero misses

1.5 for P1-P3

Fraction of memory instructions 20%, 30%, 20% for P1, P2 and P3, resp.
Miss penalty 100 ns
Speedup over reference machine R 10, 10, 10 for P1, P2 and P3, resp.
A’s operating frequency 1 GHz
Assumptions for computer model B
Number of instruction cache accesses: 108, 108 and 108 for P1, P2 and P3, resp.
Clocks per instruction assuming an
instruction/data caches have zero misses

1 for P1-P3

Fraction of memory instructions 30%, 20%, 30% for P1, P2 and P3, resp.
Miss penalty 100 ns
Speedup over reference machine R 5, 30, 5 for P1, P2 and P3, resp.
B’s operating frequency 1 GHz

1A) What is the execution time of P1, P2 and P3 on B? (3 points)

1B) What is the geometric mean execution time on A and B? Which one is the fastest and by how
much? (3 points)

1C) Calculate the number of Misses Per Kilo Instructions (MPKI) for P1 on A and B. (3 points)

1D) Assume that 50% of the misses are caused by instruction fetches. What is average number of
misses per memory instruction for P1 on A and B? (3 points)

 Page 3(12)

 3

ASSIGNMENT 2

We consider in this assignment a pipeline with a 5-stage pipelined floating-point unit and a single-
stage execution unit that executes integer, load/store and branch instructions. There are
forwarding units from the output of each execution unit and from the memory stage.

2A) Consider the following instruction sequence:

I1: ADD F0,F1,F2
I2: ADD R1,R2,R3
I3: ADD R4,R1,R3
I4: ADD F3,F4,F5
I5: ADD F6,F7,F5

Determine the number of cycles it takes from I1 is issued from the ID-stage until I5 enters the ME-
stage in the case that i) the floating-point unit is fully pipelined and ii) when it is not. (4 points)

2B) The model in 2A) is now changed to cope with higher clock frequencies as follows. - The IF

stage is replaced by two IF stages: IF1 and IF2
- The integer execution unit is replaced by two fully pipelined stages: EX1 and EX2
- The FP pipeline now consists of five stages where only a single FP operation can be initiated

every five cycles
- The ME stage is replaced by two fully pipelined stages

Consider the same program as in 2A) and determine the number of cycles it takes from I1 is issued
from the ID-stage until I5 enters the ME1-stage. Assuming that we can double the frequency for
this pipeline, which of the pipelines (the two in 2A and the one here) is the fastest? (4 points)

2C) Consider the following loop and apply loop unrolling twice. (4 points)

LOOP: LD F0, 0(R1)
 LD F1, 0(R2)

 Page 4(12)

 4

 ADD F4, F0, F1
 SD F4, 0(R1)
 ADDI R1, R1,#8
 ADDI R2, R2,#8
 SUBI R3, R3,#1
 BNEZ R3, LOOP

ASSIGNMENT 3
The diagram below shows a pipeline with support for speculative execution. There are three
functional units: one for integer/branch instructions (INT); one for floating-point instructions
(FP) and one for memory instructions (MEM). There is a branch prediction mechanism (BPB)
using 1 bit for prediction, meaning that the prediction is changed every time there is a
misprediction. In addition, a branch target buffer (BTB) is in the IF stage.

For the functional units, it takes a single cycle to execute an INT instruction, three cycles for an
FP instruction, a single cycle for a load and two cycles for a store in the MEM unit.

The pipeline supports register renaming using a register alias table (RAT) and data hazards are
handled using the Tomasulo algorithm. Speculation is enabled by a reorder buffer and
speculatively executed instructions are committed in the commit stage (CT).

Consider the following program:

I1: LOOP: L.S F0, 0(R1)
I2: L.S F1, 0(R2)
I3: ADD.S F2, F1, F0
I4: ADD.S F1, F3, F4
I5: SD F4, 0(R1)
I6: ADDI R1, R1,#8
I7: ADDI R1, R2,#8
I8: SUBI R3, R3,#1
I9: BNEZ R3, LOOP

3A)

i) Explain in detail how the RAT is instrumental in detecting the WAR hazard between I3
and I4. (2 points)

ii) Explain in detail how the ROB and the RAT are instrumental in detecting the RAW
hazard between I1/I2 on one hand and I3 on the other. (2 points)

 Page 5(12)

 5

3B) Show with a pipeline timing diagram, cycle-by-cycle, when each of the instructions I1..I9 enters
a specific pipeline stage assuming that I1 has entered ID at cycle 0 and when I9 reaches the CDB
stage. (3 points)

3C) Explain in detail what happens in the Commit (CT) stage when a branch that is mispredicted is
committed (2 points)

3D) Assume that the branch predictor is initialized to Not-Taken and that the loop in 3A) is
executed 100 times. What is the fraction of correct branch predictions in percent? (3 points)

ASSIGNMENT 4

4A) Explain which of the statements, below, are not true and why they are not true.
In a two-level inclusive memory-hierarchy the following holds:

i) A block in the upper level always exists in the lower level
ii) A block in the upper level do not exist in the lower level
iii) A block in the lower level may also exist in the upper level
iv) A block in the lower level does not exist in the upper level

Note: A wrong answer cancels a correct answer. (2 points)

4B) A computer architect wants to establish the relative performance between a system with a
blocking and a non-blocking cache using software prefetching. In software prefetching,
prefetch instructions are appropriately inserted in the code shown below. Assume that five
instructions are executed per iteration where the CPI for each instruction is one assuming that
it doesn’t cause a cache miss. On the other hand, if the instruction causes a cache miss, CPI is
20. In addition, prefetch instructions result in CPI=2. Both caches (blocking and non-blocking)
have a block size of four words. In the non-blocking cache, there are 8 miss-status-holding
registers.

for (i=0; i<1000; i++)
 C+=A[i];

First show how the code is annotated with prefetch instructions so that the cache miss penalty can
be eliminated. How much faster does the program run on the system with a non-blocking cache
using software prefetching? A convincing explanation that is easy to follow is needed for full points.
(6 points)

4C) Consider a two-way set-associative cache with 8 blocks and the following sequence of block
accesses:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 17, 18, 1, 2

Determine the number of cold, capacity and conflict misses in the cache. Assume LRU for
determination of capacity and conflict misses (4 points)

ASSIGNMENT 5

 Page 6(12)

 6

5A) Consider a multicore system comprising a number of processors (cores) on a chip that are
connected to a single-level private cache. The private caches use the write-through write policy.
Xi=Ri and Xi=Wi, mean a read and a write request to the same address X from processor i,
respectively, where Wi=C means that the value C is written by processor i. Now consider the
following access sequence assuming that X is not present in any cache from the beginning and that
X originally contains the value 0:

W1=1
R1
R2

W1=2
R2

What should be returned by the second read operation from processor 2 and what is the reason
that the correct value is not returned given the cache write policy assumed? (3 points)

5B) How can a simple change of the write-through cache make sure that the correct value is
returned to processor 2? (3 points)

5C) Multithreading refers to a general technique to switch to another thread when a high latency
operation is encountered. Explain for the three example techniques a) block multithreading b)
interleaved (or fine-grained) multithreading and c) simultaneous multithreading how a five-stage
pipeline must be extended to support each of the techniques. (6 points).

*** GOOD LUCK! ***

Solutions to the exam in DAT105/DIT 051 2020-08-18

ASSIGNMENT 1

1A) Half of the number of misses stems from memory instructions
Denote SPA = Execution time R/ Execution time A and SPB = Execution time R/ Execution time B.
Then

Execution time B = Execution time R/SPB = Execution time A x SPA/ SPB
Execution time B (P1) = 1 x 10/5 s = 2 s

 Page 7(12)

 7

Execution time B (P2) = 10 x 10/30 s = 3.3 s
Execution time B (P3) = 2 x 10/5 s = 4 s

1B) GM = (T(P1) x T(P2) x T(P3)) 1/3

A: GMA=(1x10x2)1/3 = 2.7
B: GMB=(2x3.3x4)1/3 = 2.9

Hence, A is 7% faster than B.

1C) The number of instructions executed is the same as the number of instruction cache accesses.
Since we know the number of clocks per instructions, assuming 100% hit rate, and the clock
frequency, we can calculate how long time it would take to execute the program without any cache
misses:

A: Ideal execution time for P1 is 108 x 1.5 x 1 ns = 0.15 s. Hence 0.85 s (out of 1s) is used to service
cache misses. Since 1 cache miss takes 100 ns, there must be 0.85/10-7 misses = 0.85 x 107. That is,
the total number of misses per instruction is 0.85 x 107/108 = 0.085 misses and 85 MPKI.

B: Ideal execution time for P1 is 108 x 1 x 1 ns = 0.1 s. Hence 2 – 0.1s =1.9 s is used to service cache
misses. Since 1 cache miss takes 100 ns, there must be 1.9/10-7 misses = 1.9 x 107. That is, the total
number of misses per instruction is 1.9 x 107/108 = 0.19 misses and 190 MPKI.

1D)
A: From 1C) we know that each instruction generates 0.085/2 instruction misses including memory
instructions. On the other hand, there are 20% memory instructions for P1, that is, 2 x 107. The
average number of misses for a memory instruction is 0.85x107/(2x2x107) = 0.21 misses. Hence, the
total number of misses per memory instruction is 0.0425 + 0.21 = 0.25.

B: From 1C) we know that each instruction generates 0.19/2 = 0.095 instruction misses including
memory instructions.
On the other hand, there are 30% memory instructions for P1, that is, 3 x 107. The average number
of misses for a memory instruction is 0.095x107/(3x107) = 0.031 misses. Hence, the total number of
misses per memory instruction is 0.095+ 0.031 = 0.12.

ASSIGNMENT 2

2A)

i) Fully pipelined functional unit: 10 cycles
 ID FP1 FP2 FP3 FP4 FP5 EX ME
C1 I1
C2 I2 I1
C3 I3 I1 I2
C4 I4 I1 I3 I2
C5 I5 I4 I1 I3
C6 I5 I4 I1
C7 I5 I4
C8 I5 I4 I1

 Page 8(12)

 8

C9 I5 I4
C10 I5 I4
C11 I5

ii) Not pipelined functional unit: 16 cycles
 ID FP1 FP2 FP3 FP4 FP5 EX ME
C1 I1
C2 I2 I1
C3 I3 I1 I2
C4 I4 I1 I3 I2
C5 I4 I1 I3
C6 I4 I1
C7 I5 I4
C8 I5 I4 I1
C9 I5 I4
C10 I5 I4 I4
C11 I5 I4
C12 I5
C13 I5
C14 I5
C15 I5
C16 I5
C17 I5

2B)

 ID FP1 FP2 FP3 FP4 FP5 EX1 EX2 ME1
C1 I1
C2 I2 I1
C3 I3 I1 I2
C4 I3 I1 I2
C5 I4 I1 I3 I2

 Page 9(12)

 9

C6 I5 I4 I1 I3
C7 I5 I4 I3 I1
C8 I5 I4 I3
C9 I5 I4
C10 I5 I4
C11 I5 I4
C12 I5
C13
C14
C15
C16
C17

The program will need 10, 16 and 11 cycles for the two pipelines in 2A i/ and ii/ and the one here,
respectively. Since this pipeline is clocked at twice the frequency of the ones in 2A, this pipeline is
the fastest: 10/5.5 = 1.81 and 16/5.5 = 2.9, that is by 81% and 190%, resp.

2C)

LOOP: LD F0, 0(R1)
 LD F1, 0(R2)
 LD F2, 8(R1)
 LD F3, 8(R2)
 ADD F4, F0, F1
 ADD F5, F2, F3
 ADDI R1, R1,#16
 ADDI R2, R2,#16
 SUBI R3, R3,#2
 SD F4, -16(R1)
 SD F5, -8(R1)
 BNEZ R3, LOOP

ASSIGNMENT 3

3A)

i) When I3 accesses the RAT, F1 will be associated with the tag of F1 from I2 so it cannot
erroneously access the result from I4. When I4 is accessing the RAT, register F1 will be

 Page 10(12)

 10

associated with the tag of I4 so there is a complete disassociation between F1 accessed
in I3 and F1 written to in I4 eliminating the WAR hazard between I3 and I4.

ii) When I1 and I2 are issued, entries will be allocated in the ROB at say entry i1 and i2.
These entries will be used as tags for the destination operands F0 and F1, respectively
and are recorded in the RAT as the destination operands that will eventually be written
back to the register file when I1 and I2 are committed. When I3 is issued, the RAT will
provide the tags telling I3 to wait for the values produced by I1 and I2 hence eliminating
the RAW hazard.

3B)

 ID IS INT FP1 FP2 FP3 MEM1 MEM2 CDB
C1 I1
C2 I2 I1
C3 I3 I2 I1
C3 I4 I3 I2 I1
C5 I5 I4 I3 I2
C6 I6 I5 I3 I3
C7 I7 I6 I3 I5
C8 I8 I7 I6 I4 I5 I3
C9 I9 I8 I7 I4 I5
C10 I9 I8 I4 I6
C11 I9 I7
C12 I4
C13 I8
C14 I9

3C)

The ROB records all instructions in the order they appear in the program, the program order. When a
branch is mispredicted and reaches the Commit stage (CT), all instructions that have been executed
speculatively or are under execution appear in the ROB, after the branch. These instructions are
flushed from the ROB and the branch is re-executed.

3D) Since the predictor is initialized to Not-Taken, the first branch (that is taken) is mispredicted and
the last branch (that is not taken) is also mispredicted. The rest of the branches (98) are correctly
predicted so the fraction is 2/100 = 2%.

ASSIGNMENT 4

4A)

i) True because the upper level is included in the lower level
ii) False as it contradicts i)
iii) True because a block can exist in the lower level that does not exist in the upper level.
iv) False because all blocks in the upper level exist in the lower level.

 Page 11(12)

 11

4B)
Each iteration takes 5 cycles. There is a cache miss every fourth iteration as there are four words in
each block. Since four iterations take 20 cycles to execute, launching a prefetch every fourth iteration
for the address to be used four iterations ahead will eliminate the miss penalty:

if (i mod 4) == 0 then
prefetch(i+4);

Execution time on a blocking cache:
Time for four iterations: 4 x 5 + 20 = 40 cycles

Execution time on a non-blocking cache:
Time for four iterations 4 x 5 + 2 = 22 cycles (2 for the prefetch instruction disregarding the
conditional statement)

Speedup = 40/22 = 1.81. That is, 81% faster.
4C)

Cold misses: 12 (number of unique blocks) Capacity
misses:
1 2 3 4 5 6 7 8 9 10 1 2 3 4 17 18 1 2
M M M M M M M M M M M M H H M M H H
Total: 14
Capacity=Total – Cold = 2

Conflict
1 2 3 4 5 6 7 8 9 10 1 2 3 4 17 18 1 2
M M M M M M M M M M M M H H M M M M
Total: 16
Conflict= Total – Capacity = 2

ASSIGNMENT 5

5A) The second read from processor 2 should return 2 reflecting the second write by processor 2 but
will return the value 0 as the processor will read from its own cache.

5B) By simply invalidating the block in another cache when it sees a write to that block. This will force
the second read to experience a cache miss that will return the correct value.

5C)

 Page 12(12)

 12

Regardless of the particular technique employed any multithreaded architecture must support as
many register files as the number of threads including multiple program counters.

Block multithreading:

- A thread switch stage is added to switch to another thread on a long-latency operation.
- On a long latency operation, pipeline is flushed before switching to the next thread. -

 Thread ID accompanies the instructions for hazard detection etc.

Interleaved multithreading:

- A thread switch stage is added to switch to another thread on each cycle. - Thread ID
accompanies the instructions for hazard detection etc.

Simultaneous multithreading:

- A thread scheduler selects from which thread(s) to fetch
- Thread ID accompanies the instructions for hazard detection etc.

