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  2021-08-13  

  

  

             
  
  

Exam in DAT 105 (DIT 051) Computer Architecture  
    
  
Time: August 17, 14-18 (Canvas)  
  
  
Person in charge of the exam: Per Stenström, Phone: 0730-346 340  
  
Supporting material/tools: Chalmers approved calculator, textbook.  
  
Exam Review: More information on this will be available via Canvas  
  
Grading intervals:    
  
• Fail:  Result < 24  
• Grade 3: 24 <= Result < 36  
• Grade 4: 36 <= Result < 48  
• Grade 5: 48 <= Result  
  
NOTE 1: Bonus points from Real-stuff studies and Quizzes will be added to the exam results for 
approved exams used solely for higher grades.  
  
NOTE 2: Answers must be given in English  
  
NOTE 3: Read the document Instructions for Canvas exam, available at Canvas,  
carefully  
  
  
GOOD LUCK!  
Per Stenström  
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CHALMERS UNIVERSITY OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING  
412 96 Göteborg  
Visiting address: Rännvägen 5  
Phone: 031-772 1761 Fax: 031-772 3663  
Org. Nr: 556479-5598  
E-mail: pers@chalmers.se   
  
  
  
 [General disclaimer: If you feel that sufficient facts are not provided to solve a problem, either 
1) ask the teacher when he visits the exam, or 2) make your own additional assumptions. 
Additional assumptions will be accepted if they are reasonable and required to solve the 
problem. Always make sure to motivate your answers.]   

  
ASSIGNMENT 1  

 
 

  
1A) We want to compare the performance of two computer systems A and B using execution 
statistics from three programs P1, P2, and P3. For all systems, including the reference machine R, we 
assume that all instructions execute in a single cycle except for memory instructions. Memory 
instructions, whose data requests miss in the cache, experience a miss penalty of 100 nanoseconds.  
 
The number of instructions executed for programs P1, P2 and P3 differ across systems. Similarly, the 
number of cache misses per thousand instructions (MPKI) also differ across the programs. The clock 
frequencies for the three systems also differ. All these statistics are shown in the tables below. 
Finally, P1 is run twice as often as P2 that is run twice as often as P3.   
 
 

Instructions 
(Millions) 

P1  P2  P3 

System A 1000 2000 1500 
System B 4000 1000 2000 
System R 1000 1000 1000 

 
MPKI P1 P2 P3 
System A 10 20 15 
System B 20 5 10 
System R 5 5 5 

 
Clock freq. (GHz)  
System A 1 
System B 2 
System R 1 

 
 

i) Derive the weighted arithmetic mean of the execution times to compare the performance 
of the two systems (A and B). (4 points) 
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ii) Derive the harmonic means of the speedup of A and B over the reference machine R.            

(2 points) 
 

iii) Derive the geometric mean speedup over the reference machine R for the two systems A 
and B. (2 points) 

 
 

1B) Multicore systems promise to speed up an application linearly with the number of processors. 
Now, if an application spends 25% of its execution in a part that cannot be executed in parallel, what 
is the maximum speedup that can be obtained on an ideal multicore system with an infinite number 
of processors? (4 points) 
  

ASSIGNMENT 2  
 

 
  
Assume a processor with a simple five-stage pipeline (Instruction fetch, Instruction decode, Execute, 
Memory access, Write back). Furthermore, assume that all memory accesses complete in a single 
cycle (cache hit time is one cycle), that pipeline forwarding is used whenever possible to resolve RAW 
hazards, and that there are two branch delay slots (all branch computations are completed in the EX 
stage). Integer multiply operations are performed in four steps; the first three in the Execute stage, 
and the fourth in the Memory Access stage, so multiply operations are fully pipelined like all other 
arithmetic instructions, but the result is not available until the end of the Memory access stage. 
Finally, for Branch instructions, branch conditions are established in the EX stage. 
 
Let us consider the computation according to the code below. 
 
for(int i=0; i<n; i=i+1) { 
 x[i] = x[i]*x[i]; 
} 
The x array is an array of integers (4 bytes). You may assume that register R1 already is loaded with 
the start address of the x array, i.e. the address of x[0]. The address of x[n] is likewise available in 
register R2.  
 
2A) The following is a first version of the code: 
 
LOOP: LD R4, 0(R1) 
 MUL R5, R4, R4 
 SD R5, 0(R1) 
 ADDI R1, R1, 8 
 BNE R1, R2, LOOP 
 
Disregarding the specific pipeline, list all RAW, WAR and WAW hazards in the code above. (3 points) 
 
2B) Which of the hazards in the previous assignment will lead to performance loss for the specific 
pipeline? (3 points) 
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2C) Unroll the loop four times and schedule the instructions to minimize the number of cycles lost 
due to hazards. Which hazards will remain? (3 points) 
 
2D) Explain what a 2-bit branch predictor is concerning the structure itself, how it is integrated in 
the example pipeline, how it is operated and when it will fail to correctly predict the branch 
outcome. (3 points) 
 

  
 

ASSIGNMENT 3  
The diagram below shows a pipeline with support for Tomasulo’s algorithm. There are two 
functional units for adding floating-point numbers and a single functional unit for floating-point 
division. It takes 2 cycles to carry out an addition/subtraction and 5 cycles to carry out a division. 

 

 
 

 
3A) Explain in detail what happens in each of the three pipeline stages: Issue, Execute, and Write 
result. In particular, explain how data hazards are resolved and in which cycle each instruction 
in the sequence below enters the different stages by filling out a pipeline diagram similar to the 
one below for the following instruction sequence. (6 points) 

 
ADDD   F1, F2, F3  ; –O1 
DIVD    F4, F1, F2  ; –O2 
SUBD   F2, F4, F6  ; –O3 
ADDD  F4, F1, F1  ; –O4 
 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 
O1 Issue       
O2   Issue     
O3   Issue    
O4    Issue   

 
 

3B) Consider the code below as it runs on a pipeline like the one above with support for speculative 
execution. Assume that the branch instruction is predicted to NOT be taken and that the prediction 
is validated to be correct when the last instruction has been speculatively executed. Explain in detail 
how the speculative processor keeps track of the register values during speculative execution and 
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after how many cycles after the branch instruction has been validated, all register values are 
available in the register file. (4 points) 

 
BNEZ    R1, LABEL 
ADDD   F1, F2, F3 
DIVD    F4, F1, F2 
SUBD   F2, F5, F6 

 
 

3C) Explain how branch target buffer works.  (2 points) 
 

ASSIGNMENT 4  
 

  
4A) Explain which of the statements, below, are not true and why they are not true.   
In a two-level exclusive memory-hierarchy the following holds:  

i) A block in the upper level always exists in the lower level   
ii) A block in the upper level cannot exist in the lower level   
iii) A block in the lower level does not exist in the upper level   
iv) A block in the lower level exists in the upper level   

  
Note: A wrong answer cancels a correct answer. (2 points)  
  
4B)  
A computer architect wants to establish how many misses in each of the three categories there are 
for a 4-block, two-way associative cache using LRU and for a 4-block fully associative cache. A 
program does the following block references: 0 1 2 3 4 0 5 1 8 4 9 5.  
 
Establish the number of cold, capacity (using the OPT replacement policy) and conflict misses for the 
two caches.  (4 points) 
 
4C) A computer supports sequential prefetching. Assume that a cache miss for each load instruction 
is generated every fourth iteration in the code below and that the cache miss penalty is 6 cycles. 
Which of the cache misses can be cancelled by sequential prefetching in the code below? (4 points) 
 
LOOP:  LD.D  F1, 0(R1) 
 LD.D  F2, 0(R2) 
 ADD.D F4, F1,F2 
 S.D   F4, 0(R1) 
 SUBI R1, R1,#8 
 BNEZ R1, LOOP   
 
4D) Explain how a miss-handling status register (MSHR) manages to direct a response on a cache 
miss back to the processor’s register file. (2 points) 
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ASSIGNMENT 5  
  

  
 
 
5A) Time-multiplexed multithreading comes in two flavors: Fine-grain multithreading and coarse-
grain multithreading. Explain when a switch to a new thread occurs assuming a simple five-stage 
pipeline for each of the two approaches. (4 points) 
 
5B) What structures in a superscalar processor must be replicated to realize a simultaneous 
multithreaded processor? (3 points) 
 
5C) Given an MSI cache coherence protocol, with the three states Modified, Shared and Invalid. 
Let two processors with their private caches have a copy of block X loaded into their caches. In 
the access sequence below, Xi=Ri and Xi=Wi, mean a read and a write request to the same address 
X from processor i, respectively, where Wi=C means that the value C is written by processor i. 
Now consider the following access sequence assuming that X is not present in any cache from the 
beginning and that X originally contains the value 0:  
 
  
W1=1  
R1  
R2  
W2=2  
R2  
 
What is the final state of block X in each of the two caches? (5 points) 
 
 
 

*** GOOD LUCK! ***  
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Solutions to the exam in DAT105/DIT 051 2021-08-17  

  
ASSIGNMENT 1  

  
  
 
1A)  
 

i) 
 

Let’s first determine the weights. P1 runs twice as often as P2 which runs twice as often as 
P3. Hence the weights are 4/7, 2/7 and 1/7 for P1, P2 and P3, respectively. 
 
The execution time of a program on a machine can be determined by using T = IC x CPI x Tc, 
where IC is given in the first table, CPI = 1 + MPKI x 100 ns/Tc/1000, where MPKI and 1/Tc 
(=f) are given in the second and third table, resp. 
 

Execution time  
(seconds) 

P1  P2  P3 

System A 2 x 10-6 6 x 10-6 3.75 x 10-6 
System B 1 x 10-5 1 x 10-6 1.5 x 10-6 

 
  
A: Weighted average execution time: (2x4 + 6x2 + 3.75x1) x 10-6/7 = 3.3x10-6 seconds 
B: Weighted average execution time: (0.1x4 + 1x2 + 1.5x1) x 10-6/7 = 0.6 x10-6 seconds 
 
 
ii)  
 
We must first determine the execution time on the reference machine to calculate the 
speedup. 
 
For the execution time, we use the same methodology as in i). 
 

Execution time 
(seconds) 

P1  P2  P3 

R 1.5 x 10-6 1.5 x 10-6 1.5 x 10-6 
 
The speedup of machine X over R is Execution time(R)/Execution time (X) and is given in 
the table below: 
 

Speedup over R P1  P2  P3 
System A 0.75 0.25 0.4 
System B 15  1.5  1 

 
Harmonic means of the speedup for A: 3/(1/0.75 + 1/0.25 + 1/0.4) = 0.4 
Harmonic means of the speedup for B: 3/(1/15 + 1/1.5 + 1/1) = 1.7 
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iii) 
 
Geometric mean speedup is defined as SQRTn(s1xs2x…xsn) where SQRTn is the n:th square. 
 
Geometric mean speedup for A: SQRT3(0.75x0.25x0.4) = 0.42 
Geometric mean speedup for A: SQRT3(15x1.5x1) = 2.8 
 

 
 

1B)  
 
Use Amdahl’s Law lim 1/(0.25 + 0.75/n) = 4 
                                  n->∞ 
  

  
ASSIGNMENT 2   

  
  
 
2A)  
 
I1: LOOP: LD R4, 0(R1) 
I2: MUL R5, R4, R4 
I3: SD R5, 0(R1) 
I4: ADDI R1, R1, 8 
I5: BNE R1, R2, LOOP 
 
 
RAW: I1->I2; I2->I3; I4->I5 
WAR: I3->I4 
WAW: None 
 
 
2B)  
 
RAW: I1->I2; I2->I3; I4->I5 
 
I1->I2 will lead to loss of a single cycle because the operand cannot be forwarded until the end of 
the memory stage. I2->I3 will also lead to a single cycle loss because multiply will extend to the end 
of the memory stage and can first be forwarded after that. I4 ->I5 does not lead to any loss because 
of forwarding.  
 
WAR: I3->I4 
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Instructions read their operands in the D stage in execution order so I4 cannot write to R1 before I3 
has read R1.  
 
2C) Here is the loop unrolled four times where all lost cycles due to RAW hazards have been 
eliminated.  
 
LOOP:  LD R4,0(R1) 
     LD R6,8(R1) 
 LD R7,16(R1) 
 LD R8,24(R1) 
 MUL R5,R4,R4 
 MUL R9,R6,R6 
 MUL R10,R7,R7 
 MUL R11,R8,R8 
 SD R5, 0(R1) 
 SD R9, 8(R1) 
 SD R10, 16(R1) 
              ADDI R1,R1,32 
              BNE R1,R2, LOOP 
 SD R10, -16(R1) 
 SD R11, -8(R1) 
 
 
2D)  
 
A branch predictor consists of a table that is indexed by the program counters (or a subset of the 
bits in it) in which a branch prediction is stored. A 2-bit predictor will predict untaken for say 
states 00 and 01 and taken for 10 and 11. Starting with state 00, on a correct prediction no state 
change happens. On a misprediction a transition to state 01 happens and the branch is still 
predicted as untaken. Hence, two mispredictions need to happen in a row for the predictor to 
predict taken.  
 
 
 

ASSIGNMENT 3  
  

 3A)  
The pipeline diagram: 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
O1 Iss Ex Ex CDB          
O2  Iss Iss Iss Ex Ex Ex Ex Ex CDB    
O3   Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex CDB 
O4    Iss Iss Ex Ex CDB      

 
1. O1 flows through the pipeline without encountering any hazards 
2. O2 has a RAW hazard with respect to O1 and cannot execute until Cycle 5 when the result 

from O1 is broadcast over the CDB. 
3. O3 has a RAW hazard with respect to O2 and cannot execute until Cycle 11. 
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4. O4 is independent of previous instructions and can start executing directly since WAW (O4 
with respect to O2) hazards are resolved through renaming. Note that O2 will not write 
back to the registerfile as register F4 is linked to the destination operand of O4. 

 
3B)  
 
The reorder buffer (ROB) is the main mechanism to keep track of register values when instructions 
are speculatively executed. It buffers speculatively executed instructions in the order they appear in 
the program, that is, in program order. Each entry has room for the status of each instruction 
whether it is speculatively executed or committed. When an instruction is committed, it will be 
removed from the reorder buffer in the next cycle. When an instruction is speculatively executed, 
the entry also contains the value of the destination register, if it is available.  
 
Now, when the branch instruction is validated as correctly predicted, it will be removed from the 
ROB in the next cycle. This happens, according to the assumptions, when the last instruction has 
been executed.  
 
Let’s make a pipeline diagram to track the execution of the last three instructions: 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
O1 Issue Exec Exec CDB        
O2  Issue Issue Issue Exec Exec Exec Exec Exec CDB  
O3   Issue Exec Exec CDB      

 
We note that from the point the branch instruction has retired from the ROB (in C7 according to the 
assumptions), it takes another four cycles until the result is written back to the registerfile. 

 
3C) Explain how a two-level branch target buffer works.  (4 points) 
 
A branch target buffer stores the target address for branches so that taken branches can start 
executing already in the instruction fetch stage. It is in the IF stage and is indexed by the program 
counter.  
 

ASSIGNMENT 4   
  
 
4A)  

i) A block in the upper level always exists in the lower level  
(WRONG because in an exclusive cache a block can only be in 
one level) 

ii) A block in the upper level cannot exist in the lower level   
(CORRECT) 
 

iii) A block in the lower level does not exist in the upper level   
(CORRECT) 
 
 
 

iv) A block in the lower level exists in the upper level   
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(WRONG because in an exclusive cache a block can only be in 
one level) 

 
4B)  
 
Cold misses: All unique block references: 0,1,2,3,4,5,8 and 9: 8 misses 
Capacity misses: same as misses in a fully associative cache with OPT as replacement policy minus 
number of cold misses. 
Missing references: 0 1 2 3 4 (replaces 2) 5 (replaces 3) 8 (replaces 0) 9 (replaces 1): 8 misses 
Hence 8-8 = 0 capacity misses 
Conflict misses: same as misses in a two-way associative cache with LRU minus the number of 
capacity and cold misses. 
Missing references: 0 1 2 3 4(replaces 0) 0 (replaces 2) 5 (replaces 1) 1 (replaces 3) 8 (replaces 0) 4 
(replaces 0) 9 (replaces 1) 5 (replaces 9): 12 misses 
Hence 12 – 8 – 0 = 4 conflict misses. 
 
4C)  
 
Sequential prefetching will bring in two blocks: the one accessed and the consecutive one, on a miss. 
For an iteration in which the load instructions miss, the next consecutive blocks will be available 6 
cycles later. As there are 6 instructions between two consecutive loads, the prefetched blocks arrive 
on time.  
 
4D)  
 
The memory address for the request and the destination register is stored in a MSHR. Hence, on the 
response from memory, the memory address is used as a key to locate the MSHR that contains the 
destination register identity so the operand can be inserted there. 
 

ASSIGNMENT 5  
  

  
 
5A)  
 
In fine-grain multithreading a thread switch happens every clock cycle whereas in coarse-grain 
multithreading a thread switch happens when a long-latency event is encountered such as a last-
level cache miss. 
 
5B)  
 
Assuming a multiple-issue superscalar pipeline, multiple program counters and multiple branch 
predictors and branch target buffers are needed. In addition, the register file must also be 
replicated.  
 
5C)  
 
Let’s denote the state as a tuple (S1, S2) where Si is the state of the block in the cache of 
processor i.  
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W1=1.    (M,I) 
R1 
R2 (S,S) 
W2=2 (I,M) 
R2 
 
Hence, the state of the block in processor 1’s cache is Invalid whereas the block in processor 2’s 
cache is in state Modified.   
 
  
  
  
  


