
 Dec 7 2009

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Chalmers University of Technology

SE 412 96 Göteborg, Sweden

Phone: +46 (0)31-772 10 00

E-mail: labe@chalmers.se

Web: www.ce.chalmers.se/~labe

DAT105 – COMPUTER ARCHITECTURE.

EXAM SOLUTIONS FOR 2009-12-17

 2(10)

Assignment 1.

A)

(i) TA = (1+2+4)/3 = 2.3; TB = (2+2+2)/3 = 2; TR = (6+1+1)/3 = 2.7

 B have the highest performance when using arithmetic mean.

 Using arithmetic mean to compare programs results in that programs

 with longer execution times impacts the result higher than programs with

 shorter execution times.

 (ii), (iii) :

 Comp A Comp B Ref comp

P1/R 1/6 2/6 1

P2/R 2 2 1

P3/R 4 2 1

Geometric

mean

1.1 1.1 1

 A & B have the same performance when using the geometric mean of the

 normalized execution times.

B.

 Amdahl’s law : SpeedUpoverall = 1 / (1 – F + F/S); where F = Fraction of the

total time that can be sped up. S = Speedup factor (=no. of processors)

 SpeedUpoverall = 1 / (1 - 0.8 + 0.8/S) = 1 / (0.2 + 0.8/S);

 Let S -> infinity: SpeedUpoverall -> 1 / 0.2 = 5.

C.

 Texe = IC * CPIave * Tc

 CPIave = CPIbase * 0.8 + CPImemrefs * 0.2 = 1*0.8 + 2*0.2 = 1.2;

 Texe = 10
9
 * 1.2 * 10

-9
 = 1.2 seconds.

 3(10)

Assignment 2.

A)

(i)

LOOP: LD R4, 0(R1)

 DMUL R5, R4, R4 RAW dependence on R4
1

 SD R5, 0(R1) RAW dependence on R5
2

 DADDI R1, R1, 8

 BNE R1, R2, LOOP RAW dependence on R1
3

Assuming a 5-stage pipeline structure using forwarding/bypass for handling of RAW

hazards (shown as red thick arrows):

(ii) See execution diagram in (iii)

1
st
 RAW: Partly resolved via forward MEM -> EXE/MUL1

2
nd

 RAW: Partly resolved via forward MEM/MUL2 -> EXE

3
rd

 RAW: Resolved via forward EXE -> EXE

 (iii) Control hazard (branch delay slots) = 2; RAW = 2 stall cycles.

IF ID EXE MEM WB

MUL1 MUL2

 4(10)

‗

Number of cycles per vector element is 9 cycles.

B) Assume n is an even number. Then unroll the loop once and put ―NOP‖ in the

delay slots.

 LOOP: LD R4, 0(R1)

 DMUL R5, R4, R4

 SD R5, 0(R1)

 DADDI R1, R1, 8

 NOP delay slot

 NOP delay slot

 LD R4, 0(R1)

 DMUL R5, R4, R4

 SD R5, 0(R1)

 DADDI R1, R1, 8

 BNE R1, R2, LOOP

 NOP delay slot

 NOP delay slot

Now, move the second LD up, the second SD down, merge the two DADDI‘s, adjust

offsets, and rename R4 and R5 :

Cycle No.

DMUL R5,R4,R4

SD R5,0(R1)

DADDI R1,R1,8

BNE R1,R2,LOOP

Delay slot 1

Delay slot 2

1 2 3 4 5 6 7 8 9 10

 IF ID stall MUL1 MUL2 WB

 IF stall ID

stall

EXE MEM WB

 IF

stall ID EXE

MEM

WB

 IF

ID

EXE

MEM

 IF

ID

EXE

 IF

ID

11

WB

…..

…..

LD R4,0(R1) IF ID EXE MEM

M

WB

 5(10)

 LOOP: LD R4, 0(R1)

 LD R3, 8(R1) R4 renamed to R3

 DMUL R5, R4, R4

 DMUL R6, R3, R3 R5 renamed to R6

 DADDI R1, R1, 16

 BNE R1, R2, LOOP

 SD R5, -16(R1)

 SD R6, -8(R1) R5 renamed to R6

(i) Two times (assuming n is even)

(ii) Two rename registers (R3 and R6)

(iii) New loop has 8 instructions so each loop now has 3 more instructions.

 However, since two vector elements are now computed in 8

 cycles the number of cycles per vector element is reduced to 4 cycles.

C) In the C assignment we do not use loop unrolling but just reschedule the code

within one loop iteration. To reduce control hazards we can move the SD instruction

down into one of the delay slots. One cycle is then lost due to control hazard :

LD R4,0(R1) IF ID EXE MEM

M

WB

Cycle No. 1 2 3 4 5 6 7 8 9 10 11

LD R3,8(R1) IF ID EXE MEM WB

DMUL R5,R4,R4 IF ID MUL1 MUL2

WB

DMUL R6,R3,R3

 IF

ID

MUL1

MUL2

WB

DADDI R1,R1,16 IF

ID

EXE

MEM

WB

BNE R1,R2,LOOP

 IF ID

EXE

MEM

WB

SD R5,-16(R1) IF

ID

EXE

MEM

SD R6,-8(R1)

 IF

ID

EXE

MEM

WB

WB

12

2

 6(10)

 LOOP: LD R4, 0(R1)

 DMUL R5, R4, R4

 DADDI R1, R1, 8

 BNE R1, R2, LOOP

 SD R5, -8(R1)

 NOP Delay slot

Note. Moving also the DMUL instruction into the delay slots will not help since then

we would have an RAW hazard on R5 which is not solved by forwarding.

D) See book pages 82-83 and Figure 2.4. We would have one entry

corresponding to the BNE instruction in the end of the program. The prediction would evolve

according to this table if we assume we start in state 00 and assuming n > 5:

Execution

of BNE

instruction

Prediction

state be-

fore exec

Prediction State

after

exec

first 00 Not taken

(wrong)

01 (it

was

taken)

second 01 Not taken

(wrong)

11 (it

was

taken)

third 11 Taken

(correct)

11 (it

was

taken)

4
th

, 5
th

, etc 11 Taken

(correct)

11 (it

was

taken)

Iteration n 11 Not taken

(wrong)

10 (it

was

not

taken)

 7(10)

Assignment 3.

A) SUB F0, F1, F2

 DIV F3, F0, F4 WAR name dependence on F4

 ADD F4, F5, F6

The three stages of Tomasulo‘s Algorithm :

1. Issue (I)
o Issue instruction if no structural hazard for a reservation station

o Read already available operands

2. Execution (EX)

o Execute when both operands are available;

if operad(s) not ready, watch Common Data Bus (CDB) for result

3. Write result (WR)

o Write on CDB to all awaiting functional units;

o Mark reservation station available.

B)

Cycle #: 1 2 3 4 5 9 10 11 12 19 20

SUB I EX EX EX EX WR

DIV I EX EX EX …. EX WR

ADD I EX EX …. EX WR

The last instruction (ADD) write to the register file in cycle #10.

 8(10)

C)

The four steps of a Speculative Tomasulo algorithm:

1. Issue
o If reservation station and reorder buffer slot free, issue instr

& send operands & reorder buffer nr. for destination

2. Execution
o If both operands ready: execute; if not, watch CDB for result;

when both operands are in reservation station: execute

3. Write result
o Write on Common Data Bus to all awaiting FUs & reorder

buffer; mark reservation station available

4. Commit — update register with reorder result

o When instr. is at head of reorder buffer & result is present;

update register with result (or store to memory) and remove

 instr. from reorder buffer

D) F0 is supplied via the CDB bus (in cycle #10 in the example above).

 9(10)

Assignment 4.

A)

Compulsory (or cold) miss: The first reference to a block is always a miss.

Capacity miss: If the space is not sufficient to host the data or code that have been accessed.

Conflict miss: Two memory blocks may be mapped to the same cache block with a direct or set-

associative address mapping even if there is still unused space in cache.

B)

Average memory access time = Hit time + Miss rate x Miss penalty.

C)

Way prediction addresses ―Hit time‖. Used in Set-associative caches to predict in

which Set a block resides. If correctly predicted Hit time is reduced because the sig-

nal path to read out the block may be preset for that Set (means selecting entries in

the multiplexers). If mispredicted typically a one clock cycle miss penalty is expe-

rienced. See text book on page 295 and Lecture 4.

D)

Multibanked Caches:

– Divide cache blocks into banks that can be accessed simultaneously

– While one bank is accessed for possibly several cycles, next access can proceed if it goes to an-

other bank

– Bank is selected based on block address

See as an example fig. 5.6 on page 298.

 10(10)

E) Loop interchange: The compiler interchanges loops so variables are accessed

according to their storing order in memory (improving locality). The example below

is used when the A matrix is stored in Row major order, i.e. row by row.

Before: After:

for (col=0; col < N; col++) for (row = 0; row < N; row++)

for (row = 0; row < N; row++) for (col = 0; col < N; col++)

 A [row, col] = ... A [row, col] = ...

See lecture 4 slides p. 40.

 Assignment 5.

A) Fine-Grain: switch thread on each clock cycle.

Coarse-Grain: switch thread on long latency operation (e.g. cache misses)

B) Instruction Fetch front-ends added per thread and register file structures. May also

involve adding more associativety and sizes of cache and TLB structures. And num-

ber and size of load/store queues. See example in text book p. 176-177.

C) MIMD = Multiple Instruction Streams Multiple Data Streams. Eaxh processor

has its own instruction flow operated on a unique flow om data.

D) All processors need to monitor the addresses sent on the bus. If a write occurs all

other processors marks this block as invalid in their cache. On cache misses, a pro-

cessors holding a dirty copy of the block supplies that block in response to the read

request and causes the memory access to be aborted. See textbook on page 208-.

