
2007-12-20

Exam in DAT 105 Computer Architecture

Time: December 20, 2007 after lunch in the M building

Person in charge of the exam: Minh Quang Do, 031-772 5216

Supporting material/tools: Chalmers approved calculator.

Exam Review: January 8 2008 between 10-12. Location will be announced on the web.

Grading intervals:

• Fail: Result < 24
• Grade 3: 24 <= Result < 36
• Grade 4: 36 <= Result < 48
• Grade 5: 48 <= Result

Important note: Answers should be given in English

GOOD LUCK!
Per Stenström

Page 2(6)
[General disclaimer: If you feel that sufficient facts are not
provided to solve a problem, either 1) ask the teacher when he
visits the exam, or 2) make your own additional assumptions.
Additional assumptions will be accepted if they are reasonable
and required to solve the problem. Always make sure to
motivate your answers.]

ASSIGNMENT 1

A) You are comparing three computers to see which offers the best
performance for your applications. To compare them you have measured the
execution time of three equally important representative benchmark
programs. The results of these measurements are provided in the table
below. Summarize the performance of the computers so that the one with the
best performance can be identified. Which computer is best? (4 points)

Benchmark Computer A Computer B Computer C
B1 2000 1800 2200
B2 200 160 180
B3 600 660 660

B) You have developed a new sensor interface card that can be used by a
computer system to read the input from up to 64 different sensors. To read
a sensor value, a drive signal is first sent to the selected sensor using
a special drive circuit, and then the value of the sensor can be read from
a shared sensor bus. This procedure means that only one sensor can be
measured at a time. This takes on average 50 ms including both the drive
time and read time. To efficiently handle multiple sensor read requests
from the computer system, the interface card allows multiple requests to
be queued and then processed in order. Assuming that on average 10 sensor
read requests per second are made, and that the interval between the
requests is exponentially distributed, what is the average time it takes
for the computer system to get a response on a sensor read request? (4
points)

C) In a program you are running, 45% of the instructions access data in
memory. The first level cache configuration of your computer system is
such that the hit time is one clock cycle, and the miss penalty is 20
clock cycles. For your program the miss rate for data accesses becomes
10%. Simulations show that the CPI assuming a perfect cache (0% miss rate)
is 1.5. What is the best speedup of your program that you can hope for by
improving the miss rate for data accesses? (4 points)

ASSIGNMENT 2

Assume a MIPS processor with a simple five stage pipeline of the type
presented in appendix A of the course book (Instruction fetch, Instruction
decode, Execute, Memory access, Write back). Furthermore, assume that all
memory accesses complete in a single cycle (cache hit time is one cycle),
that pipeline forwarding is used whenever possible to resolve RAW hazards,
and that there is one branch delay slot (all branch computations are
completed in the ID stage). Integer multiply operations are performed in
two steps; the first in the Execute stage, and the second in the Memory
Access stage, so multiply operations are fully pipelined like all other
arithmetic instructions, but the result is not available until the end of

Page 3(6)
the Memory access stage. You need to write a piece of MIPS assembly code
to perform the following computation in as few clock cycles as possible.

for(int i=0; i<n; i=i+1) {
x[i] = x[i]*x[i];

}

The x array is an array of long integers (8 bytes). You may assume that
register R1 already is loaded with the start address of the x array, i.e.
the address of x[0], and that you are allowed to change the value of R1.
The address of x[n] is likewise available in register R2. You may assume
that n always is greater than zero, and use that fact in your code.

A) The following is a first version of the code:

LOOP: LD R4, 0(R1)
DMUL R5, R4, R4
SD R5, 0(R1)
DADDI R1, R1, 8
BNE R1, R2,

LOOP
NOP

How many cycles does this code take to execute per loop of the original
program? Also, specify all types of dependencies and unresolved hazards in
this code. (4 points)

B) Modify the code above to require as few clock cycles as possible. How
many clock cycles does it take now? Also specify any remaining hazards. (4
points)

C) During an effort to improve the performance of the program, you find
out that n always is an even number. Try to modify the code further using
this knowledge. How many clock cycles does it take now? Also specify any
remaining hazards. (4 points)

ASSIGNMENT 3

A) In a processor with dynamic scheduling according to Tomasulo's
algorithm, hardware based speculation using a reorder buffer (ROB), and
dynamic branch prediction, execution of each instruction follows a
sequence of steps that is somewhat different depending on the type of
instruction. A description of the execution of each of four main types of
instructions (arithmetic/logic, branch, load, and store) is provided
below. However, there are some gaps marked by ['gap number'] in these
descriptions. Fill in each of these gaps. Write your answers on a separate
page as "gap number: missing text". (8 points)

Page 4(6)

Arithmetic/Logic Operation
Processing

1. Issue when reservation station and ROB entry is available
• Read already available operands from registers and instruction
• Send instruction to reservation station
• Tag unavailable operands with ROB entry
• Tag destination register with ROB entry
• Write destination register to ROB entry
• Mark ROB entry as busy

2. Execute after issue
• Wait for operand values on CDB (if not already available)
• Compute result

3. Write result when CDB and ROB available
• [1]
• Update ROB entry with result, and mark as ready
• Free reservation station

4. Commit when at head of ROB and ready
• Update destination register with result from ROB entry
• Untag destination register
• Free ROB entry

Branch Processing
1. Issue when reservation station and ROB entry is available

• Read already available operands from registers and instruction
• Tag unavailable operands with ROB entry
• Write destination address and outcome prediction to ROB entry
• Mark ROB entry as busy

2. Execute after issue
• Wait for operand values on CDB (if not already available)
• Compute result (branch condition)

3. Write result when ROB available
• Update ROB entry with result, and mark as ready
• Free reservation station

4. Commit when at head of ROB and ready
• [2]
• If result did not agree with prediction

• [3]
• Else, free ROB entry

Page 5(6)

Load Processing
1. Issue when reservation station and ROB entry is available

• Read already available operands from registers and instruction
• Tag unavailable operands with ROB entry
• Tag destination register with ROB entry
• Write destination register to ROB entry
• Mark ROB entry as busy

2. Execute step 1 after issue
• Wait for base address register value on CDB (if not already available)
• Compute address

3. Execute step 2 when [4]
• [5]

4. Write result when CDB and ROB available
• Send result on CDB to reservation stations
• Update ROB entry with result, and mark as ready
• Free reservation station

5. Commit when at head of ROB and ready
• Update destination register with result from ROB entry
• Untag destination register
• Free ROB entry

Store Processing

1. Issue when reservation station and ROB entry is available
• Read already available operands from registers and instruction
• Tag unavailable operands with ROB entry
• Mark ROB entry as busy

2. Execute after issue
• Wait for operand values on CDB (if not already available)
• Compute address and [6]

3. Write result when CDB and ROB available
• Update ROB entry with [7], and mark as ready
• Free reservation station

4. Commit when at head of ROB and ready
• [8]
• Free ROB entry

B) What changes and/or additions to the algorithms in the previous
question are required to provide support for handling of precise
exceptions? (4 points)

Page 6(6)

ASSIGNMENT 4

A) Describe two cache memory optimization techniques that may improve hit
performance (latency and throughput). For each technique, specify how it
affects hit time and fetch bandwidth. (4 points)

B) Describe two cache memory optimization techniques that may reduce miss
rate, and define the miss type (compulsory, capacity, conflict) that is
primarily affected by each technique. (4 points)

C) Describe two cache memory optimization techniques that may reduce miss
penalty. (4 points)

ASSIGNMENT 5

Nearly all computer manufacturers offer today multi-core microprocessors.
This assignment focuses on concepts central to how thread-level
parallelism can be exploited to offer a higher computational performance.

A) The performance of a superscalar processor is limited by the amount of
instruction-level parallelism in the program. In particular, when a load
instruction must fetch data from memory, it can be difficult to find a
sufficient number of independent instructions to execute while the data is
being fetched from memory.

Multithreading is a technique to do useful work while waiting for the data
to be returned from memory. Explain how the following concepts can keep
the processor busy doing useful work:

 (i) Fine-grain multithreading
 (ii) Coarse-grain multi-threading
(iii) Simultaneous multithreading

 (3 points)

B) What structures in a superscalar processor must be replicated to
realize a simultaneous multithreaded processor? (2 points)

C) Flynn classifies computer architectures that leverage thread-level
parallelism into four categories. Which ones? (4 points)

D) Shared-memory multiprocessors is an important class of architectures
that form the basis for multi-core microprocessors. The memory model is
such that all processors access the same memory.

 (i) What is cache coherence?
 (ii) How does an invalidation-based cache coherence protocol work?
(iii) How is the lock primitive in a critical section implemented using
test-and-set instructions?

 (3 points)

*** GOOD LUCK! ***

