
Solutions exam 2007-12-20
By Thomas L, 2008-12-10

Assignment 1

A) The commonly used way of comparing performance is to first normalize the execution times
relative to a reference machine. Then, the geometric mean of the relative performance figures is
calculated. In our case, let us choose Computer A as our reference. We then get the relative
performance for computer X as:

Relative performanceX=
1

Relative executiontimeX
=
TimeA
TimeX

Relative Performance

Benchmark Computer A Computer B Computer C

B1 1 1.11 0.91

B2 1 1.25 1.11

B3 1 0.91 0.91

Geometric
mean

1 1.08 0.97

The winning machine is therefore Computer B with the highest average relative performance of 1.08.

B) This is an example of a simple queueing system with a single server servicing request from a
queue. Requests arrive randomly according to a poisson process (exponential distribution of the
intervals between requests). We can use the following formula from the book, Section 6.5:

Timeresponse=TimequeueTimeserver=1 Server utilization
1−Server utilization

×Timeserver

where:

Server utilization=Arrival rate×Timeserver

In our case we have from the problem description:

Arrival rate=10req /sec
Timeserver=50ms

which give us:

Server utilization=10×0.05=0.5

Timeresponse=1
0.5

1−0.5
×50=100ms

Thus, a request spends on average 50 ms in the queue and 50 ms being processed.

C) Here we need to look at different contributions to the average CPI. First, we should break
down the execution time into enough detail (refer to the book, App C):

CPUtime=IC×CPIaverage×T c

CPIaverage=CPIexecutionCPImemorystalls

CPImemory stalls=Miss rate×Memoryaccesses per instruction×Miss penalty

For our problem, the instruction count, IC, and clock cycle time, Tc, remains fixed so we can use the
average CPI as equivalent to the total execution time. Also, CPIexecution = 1.5 since for perfect caches
we get no contribution to the CPI from any memory stalls. We also know that the number of memory
accesses per instruction is 0.45. We get:

CPIaverage=1.5Missrate×0.45×20

We will now compare two different cases. First, when our miss rate is 10% and then when the miss
rate is 0% since that represents the best speedup possible.

Speedup=
CPIaverage

old

CPIaverage
new

=
1.50.1×0.45×20
1.50×0.45×20

=
1.50.9

1.5
=1.6

So the best possible speedup is 1.6 or 60%.

Assignment 2

A) The code has data dependencies due to the use of earlier written registers. These might cause
data hazards in the pipeline which we resolve by forwarding or stalling. We might also have control
hazards due to the branch in the program. A table showing where instructions are in the pipeline in
each clock cycle shows how many cycles one iteration of the loop takes.

LOOP: LD R4, 0(R1)
 DMUL R5, R4, R4 # RAW dependency R4
 SD R5, 0(R1) # RAW dependency R5
 DADDI R1, R1, 8
 BNE R1, R2, LOOP # RAW dependency R1
 NOP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD IF ID EXE MEM WB

DMUL IF ID stall EXE MEM WB

SD IF stall ID stall EXE MEM WB

DADDI IF stall ID EXE MEM WB

BNE IF ID stall EXE MEM WB

NOP IF stall ID EXE MEM WB

LD IF ID EXE MEM WB

We find that one iteration will take 9 cycles. The data hazards cause one stall cycle each.

B) To avoid the stall cycles in A we can rearrange the code to try to make dependent instruction
become more separated. We also put something more useful than the NOP in the delay slot:

LOOP: LD R4, 0(R1)
 DADDI R1, R1, 8
 DMUL R5, R4, R4
 BNE R1, R2, LOOP
 SD R5, -8(R1) # compensate for the already incremented R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD IF ID EXE MEM WB

DADDI IF ID EXE MEM WB

DMUL IF ID EXE MEM WB

BNE IF ID EXE MEM WB

SD IF ID EXE MEM WB

LD IF ID EXE MEM WB

This completely avoids the stall cycles and one iteration now takes 5 cycles.

C) For even n, we can safely unroll the loop once and make each iteration do the work of two
previous iterations. We then get two DADDI which we merge. We also rearrange further to avoid stall
cycles:

LOOP: LD R4, 0(R1)
 DADDI R1, R1, 16 # bump index 8 x 2 = 16
 DMUL R5, R4, R4
 LD R4, -8(R1) # start second loop body before first is done
 SD R5, -16(R1)
 DMUL R5, R4, R4
 BNE R1, R2, LOOP
 SD R5, -8(R1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD IF ID EXE MEM WB

DADDI IF ID EXE MEM WB

DMUL IF ID EXE MEM WB

LD IF ID EXE MEM WB

SD IF ID EXE MEM WB

DMUL IF ID EXE MEM WB

BNE IF ID EXE MEM WB

SD IF ID EXE MEM WB

LD IF ID EXE MEM WB

Again, it is possible to completely avoid stall cycles and the instructions corresponding to the old loop
body now takes 4 cycles (one new iteration takes 8 cycles).

Assignment 3

A) See lecture slides

B) Exceptions are handled by not recognizing the exception until it is ready to commit.

Assignment 4

Refer to Appendix C and Chapter 5 in the book.

Assignment 5

See Chapter 3 and 4 in the book.

	Solutions exam 2007-12-20
	Assignment 1
	Assignment 2
	Assignment 3
	Assignment 4
	Assignment 5

