Logic in Computer Science DAT060/DIT202 (7.5 hec)

Responsible: Ana Bove – Telefon: 1020

Monday 24th of October 2022, 8:30-12:30

 $\begin{array}{c} \text{Total: 60 points} \\ \text{CTH:} \geqslant 30: \ 3, \geqslant 41: \ 4, \geqslant 51: \ 5 \\ \end{array} \quad \text{GU:} \geqslant 30: \ \text{G}, \geqslant 46: \ \text{VG} \end{array}$

No help material but dictionaries to/from English.

Write in English and as readable as possible (think that what we cannot read we cannot correct).

OBS: All answers should be *carefully* motivated. <u>Points will be deduced</u> when you give an unnecessarily complicated solution or when you do not properly justify your answer.

- 1. Give proofs in natural deduction of the following sequents:
 - (a) (3pts) $\neg s \rightarrow \neg r, (p \land q) \lor r, \neg s \rightarrow \neg q \vdash \neg p \lor s$

1.	$\neg s \rightarrow \neg r$	premise
2.	$(p \wedge q) \vee r$	premise
3.	$\neg s \rightarrow \neg q$	premise
4.	$p \wedge q$	assumption
5.	q	$\wedge e_2 4$
6.	$\neg \neg q$	¬¬i 5
7.	$\neg \neg S$	MT $(3,6)$
8.	r	assumption
9.	$\neg \neg r$	¬¬i 8
10.	$\neg \neg S$	MT $(3,9)$
11.	$\neg \neg S$	$\vee e (2,4-7,8-10)$
12.	s	¬¬e 11
13.	$\neg p \lor s$	$\vee i_2 12$

(b) $(3.5pts) \vdash \neg (p \land (\neg p \lor q)) \lor q$

Solution:

1.	$q \vee \neg q$	LEM
2.	q	assumption
3.	$\neg (p \land (\neg p \lor q)) \lor q$	$\forall i_2 2$
4.	$\neg q$	assumption
5.	$p \land (\neg p \lor q)$	assumption
6.	$p \lor \neg p$	LEM
7.	<i>p</i>	assumption
8.	$ \neg p \lor q$	$\wedge e_2 5$
9.	$ \neg p$	assumption
10.		¬e (9,7)
11.	q	assumption
12.		¬e (4,11)
13.		$\vee e (8,9-10,11-12))$
14.	$\neg p$	assumption
15.	p	$\wedge e_1 5$
16.		¬e (14,15)
17.		$\vee e (6,7-13,14-16)$
18.	$\neg (p \land (\neg p \lor q))$	¬i (5–17)
19.	$\neg (p \land (\neg p \lor q)) \lor q$	∨i ₁ 18
20.	$\neg (p \land (\neg p \lor q)) \lor q$	$\vee e (1,2-3,4-19)$

2. (a) (1pt) Without using truth tables, find the only valuation that makes the following formula satisfiable:

$$(\neg p \lor q) \land (p \lor r) \land (q \to \neg r \land \neg p)$$

(b) (2.5pts) Explain how you arrived to your solution and why no other valuation actually makes the formula satisfiable.

Solution:

(a) When p and q are false and r is true then the formula is true and hence the formula is satisfiable (that is, there is an interpretation that satisfies the formula).

- (b) For the formula to be true, all three parts of the conjunction need to be true. The rightmost part is an implication and there are 2 possible ways to make an implication true:
 - both q and ¬r ∧ ¬p are true, which means that both r and p need to be false since their negation both need to be true given that they are connected by a conjunction.
 But if r and p are false then p ∨ r is also false and then the whole formula becomes false as well.

So this is not a possible valuation.

- q is false, which this makes the whole implication true. Since q is false then p must necessarily also be false so that $\neg p \lor q$ becomes true. Now, r necessarily needs to be true so that $p \lor r$ becomes true.
- 3. For each of the sequents below, prove using natural deduction that they are valid, or give a counter-model showing that they are not.
 - (a) $(2pts) \vdash \forall x. \exists y. x = y$

Solution:

1.
$$x_0$$
fresh2. $x_0 = x_0$ =i on x_0 3. $\exists y.x_0 = y$ $\exists i 2$ 4. $\forall x. \exists y.x = y$ $\forall i (1-3)$

(b) (3pts)
$$\exists x.Q(x) \land \forall x.(P(x) \to \neg Q(x)) \vdash \exists x. \neg P(x)$$

1.	$\exists x.Q(x) \land \forall x.(P(x) \to \neg Q(x))$	premise
2.	$\exists x.Q(x)$	$\wedge e_1 1$
3.	$\forall x. (P(x) \to \neg Q(x))$	$\wedge e_2 1$
4.	x_0	fresh
5.	$Q(x_0)$	assumption
6.	$P(x_0) \to \neg Q(x_0)$	$\forall e \ 3 \text{ with } x_0$
7.	$P(x_0)$	assumption
8.	$\neg Q(x_0)$	$\rightarrow e(6,7)$
9.		$\neg e(8,5)$
10.	$\neg P(x_0)$	¬i (7–9)
11.	$\exists x. \neg P(x)$	∃i 10
12.	$\exists x. \neg P(x)$	$\exists e (2,4-11)$

(c) (3pts)
$$\forall x.(P(x) \to \exists y.Q(x,y)) \vdash \exists x.(P(x) \to \forall y.Q(x,y))$$

The sequent is not valid. We will give a counter-model.

Consider $\mathcal{A} = \mathbb{N}$, $P^{\mathcal{M}}$ the set of even numbes, and $Q^{\mathcal{M}}$ the set of pairs (a, b) such that a = 2b.

In this model the premise holds since for any even natural i there is another natural number j such that i = 2j.

On the other hand, there is no even natural numbers k such that k = 2s for all other natural numbers s.

(d) (3pts) $\forall x.(P(x,x) \lor \forall y.Q(x,y)) \vdash \forall x.(\exists y.P(x,y) \lor Q(x,x))$

1.	$\forall x.(P(x,x) \lor \forall y.Q(x,y))$	premise
2.	x_0	fresh
3.	$P(x_0, x_0) \lor \forall y. Q(x_0, y))$	$\forall e \ 1 \text{ with } x_0$
4.	$P(x_0, x_0)$	assumption
5.	$\exists y. P(x_0, y)$	∃i 4
6.	$\exists y. P(x_0, y) \lor Q(x_0, x_0)$	$\vee i_1 5$
7.	$\forall y.Q(x_0,y))$	assumption
8.	$Q(x_0, x_0)$	$\forall e \ 7 \ with \ x_0$
9.	$\exists y. P(x_0, y) \lor Q(x_0, x_0)$	$\vee i_2 8$
10.	$\exists y. P(x_0, y) \lor Q(x_0, x_0)$	$\vee e (3,4-6,7-9)$
11.	$\forall x. (\exists y. P(x, y) \lor Q(x, x))$	$\forall i (2-10)$

- 4. Consider the following semantic entailments
 - (i) $\forall x.(P(x) \to \neg Q(x)) \models \exists x.(P(x) \land \neg Q(x))$
 - (ii) $\forall x.(P(x) \to \neg Q(x)) \models \neg \exists x.(P(x) \land Q(x))$
 - (iii) $\forall x.(P(x) \to \neg Q(x)), \forall x.\forall y.(Q(x) \to R(x,y)) \models \forall x.\forall y.(P(x) \land Q(y) \to R(x,y))$
 - (a) (1.5pt) What is a model for the language?

A model \mathcal{M} for the language consists in a domain $\mathcal{A} \neq \emptyset$, two unary relations $P^{\mathcal{M}}, Q^{\mathcal{M}} \subseteq \mathcal{A}$ and a binary relation $R^{\mathcal{M}} \subseteq \mathcal{A} \times \mathcal{A}$.

(b) (3x3pts) Explain semantically (that is, reasoning with models) whether the above entailments hold or not.

Solution:

(i) This entailment is not valid.

Consider a model \mathcal{M} with domain $\mathcal{A} \neq \emptyset$, $P^{\mathcal{M}} = \emptyset$ and $Q^{\mathcal{M}} \subseteq \mathcal{A}$. In this model, the premise $\forall x.(P(x) \rightarrow \neg Q(x))$ is valid simply because no element in the domain satisfies the condition of the implication given $P^{\mathcal{M}} = \emptyset$. Since $P^{\mathcal{M}} = \emptyset$, there cannot be any element $a \in \mathcal{A}$ such that $a \in P^{\mathcal{M}}$, and hence $\exists x.P(x)$ does not hold in this model. Nor can $\exists x.(P(x) \land \neg Q(x))$ hold either. (ii) This entailment is valid.

Consider a model \mathcal{M} such that $\mathcal{M} \models \forall x.(P(x) \to \neg Q(x))$. This tells us that for all $a \in \mathcal{A}$, whenever $a \in P^{\mathcal{M}}$ then $a \notin Q^{\mathcal{M}}$. So, there cannot be an $a \in \mathcal{A}$ such that $a \in P^{\mathcal{M}}$ and also $a \in Q^{\mathcal{M}}$. Hence, $\neg \exists x.(P(x) \land Q(x))$ holds in the model.

- (iii) The entailment is not valid. Consider a model \mathcal{M} with $\mathcal{A} = \{1, 2, 3\}, P^{\mathcal{M}} = \{1, 3\}, Q^{\mathcal{M}} = \{2\}$ and $R^{\mathcal{M}} = \{(2, 1), (2, 2), (2, 3)\}.$ The premises hold in this model: for all $a \in \mathcal{A}$, if $a \in P^{\mathcal{M}}$ then $a \notin Q^{\mathcal{M}}$, and for all $a \in \mathcal{A}$, if $a \in Q^{\mathcal{M}}$ we have that $(a, b) \in R^{\mathcal{M}}$ for all $b \in \mathcal{A}$. On the other hand, the conclusion doesn't hold in the model: we have that $1 \in P^{\mathcal{M}}$ and $2 \in Q\mathcal{M}$ but $(1, 2) \notin R^{\mathcal{M}}$.
- 5. Consider the following theory, on a language with one constant a and one unary function symbol f. We write $f^2(x)$ for f(f(x)), $f^3(x)$ for f(f(f(x))) and so on.

$$\psi_0 = R(a, a) \qquad \qquad \psi_1 = \forall x \forall y \ (R(x, y) \to R(f(x), f(f(y))))$$

- (a) (1pt) Can we show ψ_0 , $\psi_1 \vdash R(f(a), f^2(a))$?
- (b) (3pts) Can we show $\psi_0, \ \psi_1 \vdash R(f(a), f(a))$?
- (c) (2pts) When do we have $\psi_0, \ \psi_1 \vdash R(f^n(a), f^m(a))$?

Solution:

- (a) From ψ_1 we get $R(a, a) \to R(f(a), f^2(a))$ and by modus ponens/ \to e with ψ_0 we get $R(f(a), f^2(a))$.
- (b) We give a counter example to show that we do not have ψ_0 , $\psi_1 \vdash R(f(a), f(a))$. Let the model be such that the domain is the set of natural numbers, $a^M = 0$, $f^M(x) = x + 1$ and $R^M(x, y)$ means y = 2x. In this model the formula R(f(a), f(a)) does not hold.

Hence by soundness, this formula cannot be proved from ψ_0 and ψ_1 .

- (c) If we consider the model above, it follows that if ψ_0 , $\psi_1 \vdash R(f^n(a), f^m(a))$, then m = 2n. Conversely, we can show ψ_0 , $\psi_1 \vdash R(f^n(a), f^{2n}(a))$ by induction on n.
- 6. (2pts) Let A be a finite set and Φ a function $Pow(A) \to Pow(A)$, where Pow(A) is the set of subsets of A. We assume that we have $\Phi(Y) \subseteq \Phi(X)$ whenever $X \subseteq Y$. Prove that there exists a subset X of A such that $\Phi(\Phi(X)) = X$.

We have $\Psi(Y) = \Phi(\Phi(Y))$ monotone: let $X \subseteq Y$ then $\Phi(Y) \subseteq \Phi(X)$ and $\Phi(\Phi(X)) \subseteq \Phi(\Phi(Y))$, hence $\Psi(X) \subseteq \Psi(Y)$. Hence by Tarski fixpoint Theorem there exists X such that $\Psi(X) = X$.

- 7. (a) (1.5pts) Explain what is a model for LTL.
 - (b) (3pts) Explain when an LTL formula is *valid* for a given model with the example of why the formula $(FGa \wedge FGb) \rightarrow FG(a \wedge b)$ is valid for any model.
 - (c) (3pts) Give a model where the formula $(GFa \wedge GFb) \rightarrow GF(a \wedge b)$ is not valid.

Solution:

- (a) A model is a tuple (S, \to, P, L) where S, \to is a finite graph such that $N(s) \neq \emptyset$ for all s, P is a set of atomic formulae and $L: S \to Pow(P)$.
- (b) A formula ψ is valid for such model if it is valid for all path on this model. If we have $\pi, 0 \models FGa \wedge FGb$ we have k such that a in $L(\pi(n))$ for $k \leq n$ and l such that b in $L(\pi(n))$ for $l \leq n$. For $max(k, l) \leq n$ we have both a and b in $L(\pi(n))$ and so $\pi, 0 \models FG(a \wedge b)$.
- (c) If we take $S = \{s_0, s_1\}$ and $s_0 \to s_1$ and $s_1 \to s_0$ and $L(s_0) = \{a\}$ and $L(s_1) = \{b\}$ and $\pi = s_0 \to s_1 \to s_0 \to s_1 \dots$ we have $\pi, 0 \models GFa$ and $\pi, 0 \models GFb$ but not $\pi, 0 \models GF(a \land b)$.
- 8. Are the following LTL formulae valid
 - (a) (2pts) $F(Xp \rightarrow p)$?
 - (b) (2pts) $Fp \rightarrow (\neg p \ U \ p)$?

- (a) The formula is valid. If we have a model M and a path π , then $\pi, n \models Xp \to p$ is not valid only if $\pi, n+1 \models p$ and not $\pi, n \models p$. So we either have $\pi, 0 \models Xp \to p$ or $\pi, 1 \models Xp \to p$.
- (b) The formula is valid. If we have $\pi, 0 \models Fp$ and we take the *first* n such that $\pi, n \models p$ we have not $\pi, k \models p$ for k < n and $\pi, n \models p$ and hence $\pi, 0 \models (\neg p \ U \ p)$.

- 9. Are the following CTL formulae valid
 - (a) (3pts) $(EGa \wedge EGb) \rightarrow EG(a \wedge b)$?
 - (b) (3pts) $(AF(a \lor b) \land AG(a \to AFb)) \to AFb?$
 - (c) (3pts) $(AF(a \lor b) \land EG(a \to EFb)) \to EFb?$

- (a) The formula is not valid. For a counter model take $S = \{s_0, s_1, s_2\}$ with $s_0 \to s_1$ and $s_0 \to s_2$ and $s_i \to s_i$ for i = 1, 2 and take $L(s_0) = \{a, b\}$ and $L(s_1) = \{a\}$ and $L(s_2) = \{b\}$. We have then $s_0 \models EGa$ and $s_1 \models EGb$ but we don't have $s_0 \models EG(a \land b)$.
- (b) The formula is valid. Given $s \models AF(a \lor b)$ and $s \models AG(a \to AFb)$ and a path π starting from s we have n such that $\pi(n) \models a \lor b$ and $\pi(n) \models a \to AF(b)$. We then have $\pi(n) \models b$ or $\pi(n) \models a$ and then $\pi(n) \models AF(b)$. In all cases, we have $k \ge n$ such that $\pi(n+k) \models b$.
- (c) The formula is valid. Given s such that $s \models AF(a \lor b)$ and $s \models EG(a \to EFb)$ we can find a path π starting from s such that $\pi(n) \models a \to EFb$ on this path. Since $s \models AF(a \lor b)$ we have $\pi(N) \models a \lor b$ for some N. If we have $\pi(N) \models b$ we have $s \models b$. If we have $\pi(N) \models a$ we have $\pi(N) \models EFb$ and hence $s \models EFb$.